skip to content
Deep learning Preview this item
ClosePreview this item
Checking...

Deep learning

Author: Ian Goodfellow; Yoshua Bengio; Aaron Courville
Publisher: Cambridge, Massachusetts : The MIT Press, [2016] ©2016
Series: Adaptive computation and machine learning.
Edition/Format:   Print book : EnglishView all editions and formats
Summary:
"Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: Ian Goodfellow; Yoshua Bengio; Aaron Courville
ISBN: 9780262035613 0262035618
OCLC Number: 955778308
Description: xxii, 775 pages : illustrations (some color) ; 24 cm.
Contents: Introduction --
APPLIED MATH AND MACHINE LEARNING BASICS --
Linear algebra --
Probability and information theory --
Numerical computation --
Machine learning basics --
DEEP NETWORKS: MODERN PRACTICES --
Deep feedforward networks --
Regularization for deep learning --
Optimization for training deep models --
Convolutional networks --
Sequence modeling: recurrent and recursive nets --
Practical methodology --
Applications --
DEEP LEARNING RESEARCH --
Linear factor models --
Autoencoders --
Representation learning --
Structured probabilistic models for deep learning --
Monte Carlo methods --
Confronting the partition function --
Approximate inference --
Deep generative models.
Series Title: Adaptive computation and machine learning.
Responsibility: Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
More information:

Abstract:

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives.  Read more...

Reviews

Editorial reviews

Publisher Synopsis

[T]he AI bible... the text should be mandatory reading by all data scientists and machine learning practitioners to get a proper foothold in this rapidly growing area of next-gen technology.-Daniel Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Related Subjects:(3)

User lists with this item (2)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/955778308> # Deep learning
    a schema:Book, schema:CreativeWork ;
    library:oclcnum "955778308" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/mau> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/3970222631#Topic/maschinelles_lernen> ; # Maschinelles Lernen
    schema:about <http://experiment.worldcat.org/entity/work/data/3970222631#Topic/computers_and_it> ; # Computers and IT
    schema:about <http://dewey.info/class/006.31/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/3970222631#Topic/machine_learning> ; # Machine learning
    schema:author <http://experiment.worldcat.org/entity/work/data/3970222631#Person/courville_aaron> ; # Aaron Courville
    schema:author <http://experiment.worldcat.org/entity/work/data/3970222631#Person/bengio_yoshua> ; # Yoshua Bengio
    schema:author <http://experiment.worldcat.org/entity/work/data/3970222631#Person/goodfellow_ian> ; # Ian Goodfellow
    schema:bookFormat bgn:PrintBook ;
    schema:copyrightYear "2016" ;
    schema:datePublished "2016" ;
    schema:description "Introduction -- APPLIED MATH AND MACHINE LEARNING BASICS -- Linear algebra -- Probability and information theory -- Numerical computation -- Machine learning basics -- DEEP NETWORKS: MODERN PRACTICES -- Deep feedforward networks -- Regularization for deep learning -- Optimization for training deep models -- Convolutional networks -- Sequence modeling: recurrent and recursive nets -- Practical methodology -- Applications -- DEEP LEARNING RESEARCH -- Linear factor models -- Autoencoders -- Representation learning -- Structured probabilistic models for deep learning -- Monte Carlo methods -- Confronting the partition function -- Approximate inference -- Deep generative models."@en ;
    schema:description ""Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and video games. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors"--Page 4 of cover."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/3970222631> ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/3970222631#Series/adaptive_computation_and_machine_learning> ; # Adaptive computation and machine learning.
    schema:name "Deep learning"@en ;
    schema:productID "955778308" ;
    schema:workExample <http://worldcat.org/isbn/9780262035613> ;
    umbel:isLike <http://bnb.data.bl.uk/id/resource/GBB6J3871> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/955778308> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/3970222631#Person/bengio_yoshua> # Yoshua Bengio
    a schema:Person ;
    schema:familyName "Bengio" ;
    schema:givenName "Yoshua" ;
    schema:name "Yoshua Bengio" ;
    .

<http://experiment.worldcat.org/entity/work/data/3970222631#Person/courville_aaron> # Aaron Courville
    a schema:Person ;
    schema:familyName "Courville" ;
    schema:givenName "Aaron" ;
    schema:name "Aaron Courville" ;
    .

<http://experiment.worldcat.org/entity/work/data/3970222631#Person/goodfellow_ian> # Ian Goodfellow
    a schema:Person ;
    schema:familyName "Goodfellow" ;
    schema:givenName "Ian" ;
    schema:name "Ian Goodfellow" ;
    .

<http://experiment.worldcat.org/entity/work/data/3970222631#Series/adaptive_computation_and_machine_learning> # Adaptive computation and machine learning.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/955778308> ; # Deep learning
    schema:name "Adaptive computation and machine learning." ;
    schema:name "Adaptive computation and machine learning" ;
    .

<http://experiment.worldcat.org/entity/work/data/3970222631#Topic/maschinelles_lernen> # Maschinelles Lernen
    a schema:Intangible ;
    schema:name "Maschinelles Lernen"@en ;
    .

<http://worldcat.org/isbn/9780262035613>
    a schema:ProductModel ;
    schema:isbn "0262035618" ;
    schema:isbn "9780262035613" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.