omitir hasta el contenido
Design of experiments in nonlinear models : asymptotic normality, optimality criteria and small-sample properties Ver este material de antemano
CerrarVer este material de antemano
Chequeando…

Design of experiments in nonlinear models : asymptotic normality, optimality criteria and small-sample properties

Autor: Luc Pronzato; Andrej Pázman
Editorial: New York, NY : Springer, ©2013.
Serie: Lecture notes in statistics (Springer-Verlag), v.212.
Edición/Formato:   Libro-e : Documento : Inglés (eng)Ver todas las ediciones y todos los formatos
Base de datos:WorldCat
Resumen:
"Design of Experiments in Nonlinear Models: Asymptotic Normality, Optimality Criteria and Small-Sample Properties provides a comprehensive coverage of the various aspects of experimental design for nonlinear models. The book contains original contributions to the theory of optimal experiments that will interest students and researchers in the field. Practitionners motivated by applications will find valuable tools  Leer más
Calificación:

(todavía no calificado) 0 con reseñas - Ser el primero.

Temas
Más materiales como éste

 

Encontrar un ejemplar en línea

Enlaces a este material

Encontrar un ejemplar en la biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que tienen este material…

Detalles

Género/Forma: Electronic books
Formato físico adicional: Print version:
Pronzato, Luc, 1959-
Design of experiments in nonlinear models.
New York : Springer, c2013
(DLC) 2013932292
(OCoLC)822018807
Tipo de material: Documento, Recurso en Internet
Tipo de documento: Recurso en Internet, Archivo de computadora
Todos autores / colaboradores: Luc Pronzato; Andrej Pázman
ISBN: 9781461463634 1461463637 1461463629 9781461463627
Número OCLC: 840485712
Descripción: 1 online resource (xv, 399 p.) : ill.
Contenido: Introduction --
Asymptotic Designs and Uniform Convergence --
Asymptotic Properties of the LS Estimator --
Asymptotic Properties of M, ML, and Maximum A Posteriori Estimators --
Local Optimality Criteria Based on Asymptotic Normality --
Criteria Based on the Small-Sample Precision of the LS Estimator --
Identifiability, Estimability, and Extended Optimality Criteria --
Nonlocal Optimum Design --
Algorithms: A Survey.
Título de la serie: Lecture notes in statistics (Springer-Verlag), v.212.
Responsabilidad: Luc Pronzato, Andrej Pázman.

Resumen:

This book thoroughly explores connections between the asymptotic properties of estimators in parametric models and experimental design, focused on the estimation of a nonlinear function of the model  Leer más

Reseñas

Reseñas editoriales

Resumen de la editorial

From the reviews: "This book introduce basic concepts and discuss asymptotic properties of estimators in nonlinear models. ... a major emphasis of the book is on deriving the asymptotic properties of Leer más

 
Reseñas contribuidas por usuarios
Recuperando reseñas de GoodReads…
Recuperando reseñas de DOGObooks…

Etiquetas

Ser el primero.
Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Datos enlazados


<http://www.worldcat.org/oclc/840485712>
library:oclcnum"840485712"
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:Book
rdf:typeschema:MediaObject
rdf:valueUnknown value: dct
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:copyrightYear"2013"
schema:creator
schema:datePublished"2013"
schema:description""Design of Experiments in Nonlinear Models: Asymptotic Normality, Optimality Criteria and Small-Sample Properties provides a comprehensive coverage of the various aspects of experimental design for nonlinear models. The book contains original contributions to the theory of optimal experiments that will interest students and researchers in the field. Practitionners motivated by applications will find valuable tools to help them designing their experiments. The first three chapters expose the connections between the asymptotic properties of estimators in parametric models and experimental design, with more emphasis than usual on some particular aspects like the estimation of a nonlinear function of the model parameters, models with heteroscedastic errors, etc. Classical optimality criteria based on those asymptotic properties are then presented thoroughly in a special chapter. Three chapters are dedicated to specific issues raised by nonlinear models. The construction of design criteria derived from non-asymptotic considerations (small-sample situation) is detailed. The connection between design and identifiability/estimability issues is investigated. Several approaches are presented to face the problem caused by the dependence of an optimal design on the value of the parameters to be estimated. A survey of algorithmic methods for the construction of optimal designs is provided."--Publisher's website."
schema:exampleOfWork<http://worldcat.org/entity/work/id/1433930411>
schema:genre"Electronic books"
schema:inLanguage"en"
schema:isPartOf
schema:name"Design of experiments in nonlinear models asymptotic normality, optimality criteria and small-sample properties"
schema:numberOfPages"399"
schema:publication
schema:publisher
schema:url<http://dx.doi.org/10.1007/978-1-4614-6363-4>
schema:url<http://oclc-marc.ebrary.com/Doc?id=10687715>
schema:url<http://site.ebrary.com/id/10687715>
schema:url<http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=577067>
schema:workExample
schema:workExample
wdrs:describedby

Content-negotiable representations

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.