aller au contenu
Design of experiments in nonlinear models : asymptotic normality, optimality criteria and small-sample properties Aperçu de cet ouvrage
FermerAperçu de cet ouvrage
Vérifiant…

Design of experiments in nonlinear models : asymptotic normality, optimality criteria and small-sample properties

Auteur : Luc Pronzato; Andrej Pázman
Éditeur : New York, NY : Springer, ©2013.
Collection : Lecture notes in statistics (Springer-Verlag), v.212.
Édition/format :   Livre électronique : Document : AnglaisVoir toutes les éditions et les formats
Base de données :WorldCat
Résumé :
"Design of Experiments in Nonlinear Models: Asymptotic Normality, Optimality Criteria and Small-Sample Properties provides a comprehensive coverage of the various aspects of experimental design for nonlinear models. The book contains original contributions to the theory of optimal experiments that will interest students and researchers in the field. Practitionners motivated by applications will find valuable tools  Lire la suite...
Évaluation :

(pas encore évalué) 0 avec des critiques - Soyez le premier.

Sujets
Plus comme ceci

 

Trouver un exemplaire en ligne

Liens vers cet ouvrage

Trouver un exemplaire dans la bibliothèque

&AllPage.SpinnerRetrieving; Recherche de bibliothèques qui possèdent cet ouvrage...

Détails

Genre/forme : Electronic books
Format – détails additionnels : Print version:
Pronzato, Luc, 1959-
Design of experiments in nonlinear models.
New York : Springer, c2013
(DLC) 2013932292
(OCoLC)822018807
Type d’ouvrage : Document, Ressource Internet
Format : Ressource Internet, Fichier informatique
Tous les auteurs / collaborateurs : Luc Pronzato; Andrej Pázman
ISBN : 9781461463634 1461463637
Numéro OCLC : 840485712
Description : 1 online resource (xv, 399 p.) : ill.
Contenu : Introduction --
Asymptotic Designs and Uniform Convergence --
Asymptotic Properties of the LS Estimator --
Asymptotic Properties of M, ML, and Maximum A Posteriori Estimators --
Local Optimality Criteria Based on Asymptotic Normality --
Criteria Based on the Small-Sample Precision of the LS Estimator --
Identifiability, Estimability, and Extended Optimality Criteria --
Nonlocal Optimum Design --
Algorithms: A Survey.
Titre de collection : Lecture notes in statistics (Springer-Verlag), v.212.
Responsabilité : Luc Pronzato, Andrej Pázman.
Plus d’informations :

Résumé :

This book thoroughly explores connections between the asymptotic properties of estimators in parametric models and experimental design, focused on the estimation of a nonlinear function of the model  Lire la suite...

Critiques

Critiques éditoriales

Synopsis de l’éditeur

From the reviews: "This book introduce basic concepts and discuss asymptotic properties of estimators in nonlinear models. ... a major emphasis of the book is on deriving the asymptotic properties of Lire la suite...

 
Critiques d’utilisateurs
Récupération des critiques de GoodReads...
Récuperation des critiques DOGObooks…

Tags

Soyez le premier.
Confirmez cette demande

Vous avez peut-être déjà demandé cet ouvrage. Veuillez sélectionner OK si vous voulez poursuivre avec cette demande quand même.

Données liées


<http://www.worldcat.org/oclc/840485712>
library:oclcnum"840485712"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/840485712>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:copyrightYear"2013"
schema:creator
schema:datePublished"2013"
schema:description""Design of Experiments in Nonlinear Models: Asymptotic Normality, Optimality Criteria and Small-Sample Properties provides a comprehensive coverage of the various aspects of experimental design for nonlinear models. The book contains original contributions to the theory of optimal experiments that will interest students and researchers in the field. Practitionners motivated by applications will find valuable tools to help them designing their experiments. The first three chapters expose the connections between the asymptotic properties of estimators in parametric models and experimental design, with more emphasis than usual on some particular aspects like the estimation of a nonlinear function of the model parameters, models with heteroscedastic errors, etc. Classical optimality criteria based on those asymptotic properties are then presented thoroughly in a special chapter. Three chapters are dedicated to specific issues raised by nonlinear models. The construction of design criteria derived from non-asymptotic considerations (small-sample situation) is detailed. The connection between design and identifiability/estimability issues is investigated. Several approaches are presented to face the problem caused by the dependence of an optimal design on the value of the parameters to be estimated. A survey of algorithmic methods for the construction of optimal designs is provided."--Publisher's website."
schema:exampleOfWork<http://worldcat.org/entity/work/id/1433930411>
schema:genre"Electronic books."
schema:inLanguage"en"
schema:name"Design of experiments in nonlinear models asymptotic normality, optimality criteria and small-sample properties"
schema:numberOfPages"399"
schema:publisher
schema:url
schema:url<http://dx.doi.org/10.1007/978-1-4614-6363-4>
schema:url<http://oclc-marc.ebrary.com/Doc?id=10687715>
schema:url<http://site.ebrary.com/id/10687715>
schema:url<http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=577067>
schema:workExample

Content-negotiable representations

Fermer la fenêtre

Veuillez vous identifier dans WorldCat 

Vous n’avez pas de compte? Vous pouvez facilement créer un compte gratuit.