přejít na obsah
Diffeomorphisms of elliptic 3-manifolds Náhled dokumentu
ZavřítNáhled dokumentu
Probíhá kontrola...

Diffeomorphisms of elliptic 3-manifolds

Autor Sungbok Hong; et al
Vydavatel: Berlin : Springer, ©2012.
Edice: Lecture notes in mathematics (Springer-Verlag), 2055.
Vydání/formát:   e-kniha : Document : EnglishZobrazit všechny vydání a formáty
Databáze:WorldCat
Shrnutí:
This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its  Přečíst více...
Hodnocení:

(ještě nehodnoceno) 0 zobrazit recenze - Buďte první.

Předmětová hesla:
Více podobných

 

Najít online exemplář

Odkazy na tento dokument

Vyhledat exemplář v knihovně

&AllPage.SpinnerRetrieving; Vyhledávání knihoven, které vlastní tento dokument...

Detaily

Žánr/forma: Electronic books
Typ materiálu: Document, Internetový zdroj
Typ dokumentu: Internet Resource, Computer File
Všichni autoři/tvůrci: Sungbok Hong; et al
ISBN: 364231564X 9783642315640
OCLC číslo: 808999840
Popis: 1 online resource (x, 155 p.) : ill.
Obsahy: Elliptic Three-Manifolds and the Smale Conjecture --
Diffeomorphisms and Embeddings of Manifolds --
The Method of Cerf and Palais --
Elliptic Three-Manifolds Containing One-Sided Klein Bottles --
Lens Spaces.
Název edice: Lecture notes in mathematics (Springer-Verlag), 2055.
Odpovědnost: Sungbok Hong ... [et al.].
Více informací:

Anotace:

This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equivalence. The original Smale Conjecture, for the 3-sphere, was proven by J. Cerf and A. Hatcher, and N. Ivanov proved the generalized conjecture for many of the elliptic 3-manifolds that contain a geometrically incompressible Klein bottle. The main results establish the Smale Conjecture for all elliptic 3-manifolds containing geometrically incompressible Klein bottles, and for all lens spaces L(m,q) with m at least 3. Additional results imply that for a Haken Seifert-fibered 3 manifold V, the space of Seifert fiberings has contractible components, and apart from a small list of known exceptions, is contractible. Considerable foundational and background material on diffeomorphism groups is included.

Recenze

Recenze vložené uživatelem
Nahrávání recenzí GoodReads...
Přebírání recenzí DOGO books...

Štítky

Buďte první.

Podobné dokumenty

Související předmětová hesla:(2)

Seznamy uživatele s tímto dokumentem (1)

Potvrdit tento požadavek

Tento dokument jste si již vyžádali. Prosím vyberte Ok pokud chcete přesto v žádance pokračovat.

Propojená data


<http://www.worldcat.org/oclc/808999840>
library:oclcnum"808999840"
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:Book
rdf:typeschema:MediaObject
rdf:valueUnknown value: dct
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:copyrightYear"2012"
schema:datePublished"2012"
schema:description"This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equivalence. The original Smale Conjecture, for the 3-sphere, was proven by J. Cerf and A. Hatcher, and N. Ivanov proved the generalized conjecture for many of the elliptic 3-manifolds that contain a geometrically incompressible Klein bottle. The main results establish the Smale Conjecture for all elliptic 3-manifolds containing geometrically incompressible Klein bottles, and for all lens spaces L(m,q) with m at least 3. Additional results imply that for a Haken Seifert-fibered 3 manifold V, the space of Seifert fiberings has contractible components, and apart from a small list of known exceptions, is contractible. Considerable foundational and background material on diffeomorphism groups is included."
schema:exampleOfWork<http://worldcat.org/entity/work/id/1122985970>
schema:genre"Electronic books"
schema:inLanguage"en"
schema:isPartOf
schema:name"Diffeomorphisms of elliptic 3-manifolds"
schema:numberOfPages"155"
schema:publication
schema:publisher
schema:url<http://www.springerlink.com/content/978-3-642-31563-3/contents/>
schema:url<http://dx.doi.org/10.1007/978-3-642-31564-0>
schema:url<http://site.ebrary.com/id/10653337>
schema:workExample
wdrs:describedby

Content-negotiable representations

Zavřít okno

Prosím přihlaste se do WorldCat 

Nemáte účet? Můžete si jednoduše vytvořit bezplatný účet.