omitir hasta el contenido
Diffeomorphisms of elliptic 3-manifolds Ver este material de antemano
CerrarVer este material de antemano
Chequeando…

Diffeomorphisms of elliptic 3-manifolds

Autor: Sungbok Hong; et al
Editorial: Berlin : Springer, ©2012.
Serie: Lecture notes in mathematics (Springer-Verlag), 2055.
Edición/Formato:   Libro-e : Documento : Inglés (eng)Ver todas las ediciones y todos los formatos
Base de datos:WorldCat
Resumen:
This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its  Leer más
Calificación:

(todavía no calificado) 0 con reseñas - Ser el primero.

Temas
Más materiales como éste

 

Encontrar un ejemplar en línea

Enlaces a este material

Encontrar un ejemplar en la biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que tienen este material…

Detalles

Género/Forma: Electronic books
Tipo de material: Documento, Recurso en Internet
Tipo de documento: Recurso en Internet, Archivo de computadora
Todos autores / colaboradores: Sungbok Hong; et al
ISBN: 364231564X 9783642315640
Número OCLC: 808999840
Descripción: 1 online resource (x, 155 p.) : ill.
Contenido: Elliptic Three-Manifolds and the Smale Conjecture --
Diffeomorphisms and Embeddings of Manifolds --
The Method of Cerf and Palais --
Elliptic Three-Manifolds Containing One-Sided Klein Bottles --
Lens Spaces.
Título de la serie: Lecture notes in mathematics (Springer-Verlag), 2055.
Responsabilidad: Sungbok Hong ... [et al.].
Más información:

Resumen:

This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equivalence. The original Smale Conjecture, for the 3-sphere, was proven by J. Cerf and A. Hatcher, and N. Ivanov proved the generalized conjecture for many of the elliptic 3-manifolds that contain a geometrically incompressible Klein bottle. The main results establish the Smale Conjecture for all elliptic 3-manifolds containing geometrically incompressible Klein bottles, and for all lens spaces L(m,q) with m at least 3. Additional results imply that for a Haken Seifert-fibered 3 manifold V, the space of Seifert fiberings has contractible components, and apart from a small list of known exceptions, is contractible. Considerable foundational and background material on diffeomorphism groups is included.

Reseñas

Reseñas contribuidas por usuarios
Recuperando reseñas de GoodReads…
Recuperando reseñas de DOGObooks…

Etiquetas

Ser el primero.

Materiales similares

Temas relacionados:(2)

Listas de usuarios con este material (1)

Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Datos enlazados


Primary Entity

<http://www.worldcat.org/oclc/808999840> # Diffeomorphisms of elliptic 3-manifolds
    a schema:Book, schema:CreativeWork, schema:MediaObject ;
    library:oclcnum "808999840" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/gw> ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/1122985970#Place/berlin> ; # Berlin
    schema:about <http://id.worldcat.org/fast/1150339> ; # Three-manifolds (Topology)
    schema:about <http://id.worldcat.org/fast/893404> ; # Diffeomorphisms
    schema:about <http://dewey.info/class/514.72/e23/> ;
    schema:bookFormat schema:EBook ;
    schema:contributor <http://viaf.org/viaf/277751385> ; # Sungbok Hong
    schema:copyrightYear "2012" ;
    schema:datePublished "2012" ;
    schema:description "This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equivalence. The original Smale Conjecture, for the 3-sphere, was proven by J. Cerf and A. Hatcher, and N. Ivanov proved the generalized conjecture for many of the elliptic 3-manifolds that contain a geometrically incompressible Klein bottle. The main results establish the Smale Conjecture for all elliptic 3-manifolds containing geometrically incompressible Klein bottles, and for all lens spaces L(m,q) with m at least 3. Additional results imply that for a Haken Seifert-fibered 3 manifold V, the space of Seifert fiberings has contractible components, and apart from a small list of known exceptions, is contractible. Considerable foundational and background material on diffeomorphism groups is included." ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/1122985970> ;
    schema:genre "Electronic books" ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://worldcat.org/issn/1617-9692> ; # Lecture notes in mathematics,
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/1122985970#Series/lecture_notes_in_mathematics_springer_verlag> ; # Lecture notes in mathematics (Springer-Verlag) ;
    schema:name "Diffeomorphisms of elliptic 3-manifolds" ;
    schema:numberOfPages "155" ;
    schema:productID "808999840" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/808999840#PublicationEvent/berlin_springer_c2012> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/1122985970#Agent/springer> ; # Springer
    schema:url <http://www.springerlink.com/content/978-3-642-31563-3/contents/> ;
    schema:url <http://link.springer.com/openurl?genre=book&isbn=978-3-642-31563-3> ;
    schema:url <http://dx.doi.org/10.1007/978-3-642-31564-0> ;
    schema:url <http://site.ebrary.com/id/10653337> ;
    schema:workExample <http://worldcat.org/isbn/9783642315640> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/808999840> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1122985970#Series/lecture_notes_in_mathematics_springer_verlag> # Lecture notes in mathematics (Springer-Verlag) ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/808999840> ; # Diffeomorphisms of elliptic 3-manifolds
    schema:name "Lecture notes in mathematics (Springer-Verlag) ;" ;
    .

<http://id.worldcat.org/fast/1150339> # Three-manifolds (Topology)
    a schema:Intangible ;
    schema:name "Three-manifolds (Topology)" ;
    .

<http://id.worldcat.org/fast/893404> # Diffeomorphisms
    a schema:Intangible ;
    schema:name "Diffeomorphisms" ;
    .

<http://link.springer.com/openurl?genre=book&isbn=978-3-642-31563-3>
    rdfs:comment "View online via SpringerLINK Lecture Notes in Mathematics Contemporary (1997-present) [ANU staff and students only]" ;
    .

<http://viaf.org/viaf/277751385> # Sungbok Hong
    a schema:Person ;
    schema:familyName "Hong" ;
    schema:givenName "Sungbok" ;
    schema:name "Sungbok Hong" ;
    .

<http://worldcat.org/isbn/9783642315640>
    a schema:ProductModel ;
    schema:description "electronic bk." ;
    schema:isbn "364231564X" ;
    schema:isbn "9783642315640" ;
    .

<http://worldcat.org/issn/1617-9692> # Lecture notes in mathematics,
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/808999840> ; # Diffeomorphisms of elliptic 3-manifolds
    schema:issn "1617-9692" ;
    schema:name "Lecture notes in mathematics," ;
    .


Content-negotiable representations

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.