aller au contenu
Diffeomorphisms of elliptic 3-manifolds Aperçu de cet ouvrage
FermerAperçu de cet ouvrage
Vérifiant…

Diffeomorphisms of elliptic 3-manifolds

Auteur : Sungbok Hong; et al
Éditeur : Berlin : Springer, ©2012.
Collection : Lecture notes in mathematics (Springer-Verlag), 2055.
Édition/format :   Livre électronique : Document : AnglaisVoir toutes les éditions et tous les formats
Base de données :WorldCat
Résumé :
This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its  Lire la suite...
Évaluation :

(pas encore évalué) 0 avec des critiques - Soyez le premier.

Sujets
Plus comme ceci

 

Trouver un exemplaire en ligne

Liens vers cet ouvrage

Trouver un exemplaire dans la bibliothèque

&AllPage.SpinnerRetrieving; Recherche de bibliothèques qui possèdent cet ouvrage...

Détails

Genre/forme : Electronic books
Type d’ouvrage : Document, Ressource Internet
Format : Ressource Internet, Fichier informatique
Tous les auteurs / collaborateurs : Sungbok Hong; et al
ISBN : 364231564X 9783642315640
Numéro OCLC : 808999840
Description : 1 online resource (x, 155 p.) : ill.
Contenu : Elliptic Three-Manifolds and the Smale Conjecture --
Diffeomorphisms and Embeddings of Manifolds --
The Method of Cerf and Palais --
Elliptic Three-Manifolds Containing One-Sided Klein Bottles --
Lens Spaces.
Titre de collection : Lecture notes in mathematics (Springer-Verlag), 2055.
Responsabilité : Sungbok Hong ... [et al.].
Plus d’informations :

Résumé :

This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equivalence. The original Smale Conjecture, for the 3-sphere, was proven by J. Cerf and A. Hatcher, and N. Ivanov proved the generalized conjecture for many of the elliptic 3-manifolds that contain a geometrically incompressible Klein bottle. The main results establish the Smale Conjecture for all elliptic 3-manifolds containing geometrically incompressible Klein bottles, and for all lens spaces L(m,q) with m at least 3. Additional results imply that for a Haken Seifert-fibered 3 manifold V, the space of Seifert fiberings has contractible components, and apart from a small list of known exceptions, is contractible. Considerable foundational and background material on diffeomorphism groups is included.

Critiques

Critiques d’utilisateurs
Récupération des critiques de GoodReads...
Récuperation des critiques DOGObooks…

Tags

Soyez le premier.

Ouvrages semblables

Sujets associés :(2)

Listes d’utilisateurs dans lesquelles cet ouvrage apparaît (1)

Confirmez cette demande

Vous avez peut-être déjà demandé cet ouvrage. Veuillez sélectionner OK si vous voulez poursuivre avec cette demande quand même.

Données liées


<http://www.worldcat.org/oclc/808999840>
library:oclcnum"808999840"
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:Book
rdf:typeschema:MediaObject
rdf:valueUnknown value: dct
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:copyrightYear"2012"
schema:datePublished"2012"
schema:description"This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equivalence. The original Smale Conjecture, for the 3-sphere, was proven by J. Cerf and A. Hatcher, and N. Ivanov proved the generalized conjecture for many of the elliptic 3-manifolds that contain a geometrically incompressible Klein bottle. The main results establish the Smale Conjecture for all elliptic 3-manifolds containing geometrically incompressible Klein bottles, and for all lens spaces L(m,q) with m at least 3. Additional results imply that for a Haken Seifert-fibered 3 manifold V, the space of Seifert fiberings has contractible components, and apart from a small list of known exceptions, is contractible. Considerable foundational and background material on diffeomorphism groups is included."
schema:exampleOfWork<http://worldcat.org/entity/work/id/1122985970>
schema:genre"Electronic books"
schema:inLanguage"en"
schema:isPartOf
schema:name"Diffeomorphisms of elliptic 3-manifolds"
schema:numberOfPages"155"
schema:publication
schema:publisher
schema:url<http://www.springerlink.com/content/978-3-642-31563-3/contents/>
schema:url<http://dx.doi.org/10.1007/978-3-642-31564-0>
schema:url<http://site.ebrary.com/id/10653337>
schema:workExample
wdrs:describedby

Content-negotiable representations

Fermer la fenêtre

Veuillez vous identifier dans WorldCat 

Vous n’avez pas de compte? Vous pouvez facilement créer un compte gratuit.