doorgaan naar inhoud
Diffeomorphisms of elliptic 3-manifolds Voorbeeldweergave van dit item
SluitenVoorbeeldweergave van dit item
Bezig met controle...

Diffeomorphisms of elliptic 3-manifolds

Auteur: Sungbok Hong; et al
Uitgever: Berlin : Springer, ©2012.
Serie: Lecture notes in mathematics (Springer-Verlag), 2055.
Editie/Formaat:   eBoek : Document : EngelsAlle edities en materiaalsoorten bekijken.
Database:WorldCat
Samenvatting:
This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its  Meer lezen...
Beoordeling:

(nog niet beoordeeld) 0 met beoordelingen - U bent de eerste

Onderwerpen
Meer in deze trant

 

Zoeken naar een online exemplaar

Links naar dit item

Zoeken naar een in de bibliotheek beschikbaar exemplaar

&AllPage.SpinnerRetrieving; Bibliotheken met dit item worden gezocht…

Details

Genre/Vorm: Electronic books
Genre: Document, Internetbron
Soort document: Internetbron, Computerbestand
Alle auteurs / medewerkers: Sungbok Hong; et al
ISBN: 364231564X 9783642315640
OCLC-nummer: 808999840
Beschrijving: 1 online resource (x, 155 p.) : ill.
Inhoud: Elliptic Three-Manifolds and the Smale Conjecture --
Diffeomorphisms and Embeddings of Manifolds --
The Method of Cerf and Palais --
Elliptic Three-Manifolds Containing One-Sided Klein Bottles --
Lens Spaces.
Serietitel: Lecture notes in mathematics (Springer-Verlag), 2055.
Verantwoordelijkheid: Sungbok Hong ... [et al.].
Meer informatie:

Fragment:

This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equivalence. The original Smale Conjecture, for the 3-sphere, was proven by J. Cerf and A. Hatcher, and N. Ivanov proved the generalized conjecture for many of the elliptic 3-manifolds that contain a geometrically incompressible Klein bottle. The main results establish the Smale Conjecture for all elliptic 3-manifolds containing geometrically incompressible Klein bottles, and for all lens spaces L(m,q) with m at least 3. Additional results imply that for a Haken Seifert-fibered 3 manifold V, the space of Seifert fiberings has contractible components, and apart from a small list of known exceptions, is contractible. Considerable foundational and background material on diffeomorphism groups is included.

Beoordelingen

Beoordelingen door gebruikers
Beoordelingen van GoodReads worden opgehaald...
Bezig met opvragen DOGObooks-reviews...

Tags

U bent de eerste.

Vergelijkbare items

Verwante onderwerpen:(2)

Gebruiker-lijsten met dit item (1)

Bevestig deze aanvraag

Misschien heeft u dit item reeds aangevraagd. Selecteer a.u.b. Ok als u toch wilt doorgaan met deze aanvraag.

Gekoppelde data


Primary Entity

<http://www.worldcat.org/oclc/808999840> # Diffeomorphisms of elliptic 3-manifolds
    a schema:Book, schema:CreativeWork, schema:MediaObject ;
    library:oclcnum "808999840" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/gw> ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/1122985970#Place/berlin> ; # Berlin
    schema:about <http://id.worldcat.org/fast/1150339> ; # Three-manifolds (Topology)
    schema:about <http://id.worldcat.org/fast/893404> ; # Diffeomorphisms
    schema:about <http://dewey.info/class/514.72/e23/> ;
    schema:bookFormat schema:EBook ;
    schema:contributor <http://viaf.org/viaf/277751385> ; # Sungbok Hong
    schema:copyrightYear "2012" ;
    schema:datePublished "2012" ;
    schema:description "This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equivalence. The original Smale Conjecture, for the 3-sphere, was proven by J. Cerf and A. Hatcher, and N. Ivanov proved the generalized conjecture for many of the elliptic 3-manifolds that contain a geometrically incompressible Klein bottle. The main results establish the Smale Conjecture for all elliptic 3-manifolds containing geometrically incompressible Klein bottles, and for all lens spaces L(m,q) with m at least 3. Additional results imply that for a Haken Seifert-fibered 3 manifold V, the space of Seifert fiberings has contractible components, and apart from a small list of known exceptions, is contractible. Considerable foundational and background material on diffeomorphism groups is included." ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/1122985970> ;
    schema:genre "Electronic books" ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://worldcat.org/issn/1617-9692> ; # Lecture notes in mathematics,
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/1122985970#Series/lecture_notes_in_mathematics_springer_verlag> ; # Lecture notes in mathematics (Springer-Verlag) ;
    schema:name "Diffeomorphisms of elliptic 3-manifolds" ;
    schema:numberOfPages "155" ;
    schema:productID "808999840" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/808999840#PublicationEvent/berlin_springer_c2012> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/1122985970#Agent/springer> ; # Springer
    schema:url <http://www.springerlink.com/content/978-3-642-31563-3/contents/> ;
    schema:url <http://link.springer.com/openurl?genre=book&isbn=978-3-642-31563-3> ;
    schema:url <http://dx.doi.org/10.1007/978-3-642-31564-0> ;
    schema:url <http://site.ebrary.com/id/10653337> ;
    schema:workExample <http://worldcat.org/isbn/9783642315640> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/808999840> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1122985970#Series/lecture_notes_in_mathematics_springer_verlag> # Lecture notes in mathematics (Springer-Verlag) ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/808999840> ; # Diffeomorphisms of elliptic 3-manifolds
    schema:name "Lecture notes in mathematics (Springer-Verlag) ;" ;
    .

<http://id.worldcat.org/fast/1150339> # Three-manifolds (Topology)
    a schema:Intangible ;
    schema:name "Three-manifolds (Topology)" ;
    .

<http://id.worldcat.org/fast/893404> # Diffeomorphisms
    a schema:Intangible ;
    schema:name "Diffeomorphisms" ;
    .

<http://link.springer.com/openurl?genre=book&isbn=978-3-642-31563-3>
    rdfs:comment "View online via SpringerLINK Lecture Notes in Mathematics Contemporary (1997-present) [ANU staff and students only]" ;
    .

<http://viaf.org/viaf/277751385> # Sungbok Hong
    a schema:Person ;
    schema:familyName "Hong" ;
    schema:givenName "Sungbok" ;
    schema:name "Sungbok Hong" ;
    .

<http://worldcat.org/isbn/9783642315640>
    a schema:ProductModel ;
    schema:description "electronic bk." ;
    schema:isbn "364231564X" ;
    schema:isbn "9783642315640" ;
    .

<http://worldcat.org/issn/1617-9692> # Lecture notes in mathematics,
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/808999840> ; # Diffeomorphisms of elliptic 3-manifolds
    schema:issn "1617-9692" ;
    schema:name "Lecture notes in mathematics," ;
    .


Content-negotiable representations

Venster sluiten

Meld u aan bij WorldCat 

Heeft u geen account? U kunt eenvoudig een nieuwe gratis account aanmaken.