pular para conteúdo
Diffeomorphisms of elliptic 3-manifolds Ver prévia deste item
FecharVer prévia deste item
Checando...

Diffeomorphisms of elliptic 3-manifolds

Autor: Sungbok Hong; et al
Editora: Berlin : Springer, ©2012.
Séries: Lecture notes in mathematics (Springer-Verlag), 2055.
Edição/Formato   e-book : Documento : InglêsVer todas as edições e formatos
Base de Dados:WorldCat
Resumo:
This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its  Ler mais...
Classificação:

(ainda não classificado) 0 com críticas - Seja o primeiro.

Assuntos
Mais como este

 

Encontrar uma cópia on-line

Links para este item

Encontrar uma cópia na biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que possuem este item...

Detalhes

Gênero/Forma: Electronic books
Tipo de Material: Documento, Recurso Internet
Tipo de Documento: Recurso Internet, Arquivo de Computador
Todos os Autores / Contribuintes: Sungbok Hong; et al
ISBN: 364231564X 9783642315640
Número OCLC: 808999840
Descrição: 1 online resource (x, 155 p.) : ill.
Conteúdos: Elliptic Three-Manifolds and the Smale Conjecture --
Diffeomorphisms and Embeddings of Manifolds --
The Method of Cerf and Palais --
Elliptic Three-Manifolds Containing One-Sided Klein Bottles --
Lens Spaces.
Título da Série: Lecture notes in mathematics (Springer-Verlag), 2055.
Responsabilidade: Sungbok Hong ... [et al.].
Mais informações:

Resumo:

This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equivalence. The original Smale Conjecture, for the 3-sphere, was proven by J. Cerf and A. Hatcher, and N. Ivanov proved the generalized conjecture for many of the elliptic 3-manifolds that contain a geometrically incompressible Klein bottle. The main results establish the Smale Conjecture for all elliptic 3-manifolds containing geometrically incompressible Klein bottles, and for all lens spaces L(m,q) with m at least 3. Additional results imply that for a Haken Seifert-fibered 3 manifold V, the space of Seifert fiberings has contractible components, and apart from a small list of known exceptions, is contractible. Considerable foundational and background material on diffeomorphism groups is included.

Críticas

Críticas contribuídas por usuários
Recuperando críticas GoodReas...
Recuperando comentários DOGObooks

Etiquetas

Seja o primeiro.

Ítens Similares

Assuntos Relacionados:(2)

Listas de usuários com este item (1)

Confirmar esta solicitação

Você já pode ter solicitado este item. Por favor, selecione Ok se gostaria de proceder com esta solicitação de qualquer forma.

Dados Ligados


<http://www.worldcat.org/oclc/808999840>
library:oclcnum"808999840"
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:Book
rdf:typeschema:MediaObject
rdf:valueUnknown value: dct
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:copyrightYear"2012"
schema:datePublished"2012"
schema:description"This work concerns the diffeomorphism groups of 3-manifolds, in particular of elliptic 3-manifolds. These are the closed 3-manifolds that admit a Riemannian metric of constant positive curvature, now known to be exactly the closed 3-manifolds that have a finite fundamental group. The (Generalized) Smale Conjecture asserts that for any elliptic 3-manifold M, the inclusion from the isometry group of M to its diffeomorphism group is a homotopy equivalence. The original Smale Conjecture, for the 3-sphere, was proven by J. Cerf and A. Hatcher, and N. Ivanov proved the generalized conjecture for many of the elliptic 3-manifolds that contain a geometrically incompressible Klein bottle. The main results establish the Smale Conjecture for all elliptic 3-manifolds containing geometrically incompressible Klein bottles, and for all lens spaces L(m,q) with m at least 3. Additional results imply that for a Haken Seifert-fibered 3 manifold V, the space of Seifert fiberings has contractible components, and apart from a small list of known exceptions, is contractible. Considerable foundational and background material on diffeomorphism groups is included."
schema:exampleOfWork<http://worldcat.org/entity/work/id/1122985970>
schema:genre"Electronic books"
schema:inLanguage"en"
schema:isPartOf
schema:name"Diffeomorphisms of elliptic 3-manifolds"
schema:numberOfPages"155"
schema:publication
schema:publisher
schema:url<http://www.springerlink.com/content/978-3-642-31563-3/contents/>
schema:url<http://dx.doi.org/10.1007/978-3-642-31564-0>
schema:url<http://site.ebrary.com/id/10653337>
schema:workExample
wdrs:describedby

Content-negotiable representations

Close Window

Por favor, conecte-se ao WorldCat 

Não tem uma conta? Você pode facilmente criar uma conta gratuita.