skip to content
Differential geometry applied to dynamical systems Preview this item
ClosePreview this item
Checking...

Differential geometry applied to dynamical systems

Author: Jean-Marc Ginoux
Publisher: Hackensack, N.J. : World Scientific, 2009.
Series: World Scientific series on nonlinear science., Series A,, Monographs and treatises ;, vol. 66.; World Scientific series on nonlinear science., Series A,, Monographs and treatises ;, v. 66.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
This book aims to present a new approach called flow curvature method that applies differential geometry to dynamical systems. Hence, for a trajectory curve, an integral of any n-dimensional dynamical system as a curve in Euclidean n-space, the curvature of the trajectory -- or the flow -- may be analytically computed. Then, the location of the points where the curvature of the flow vanishes defines a manifold  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Ginoux, Jean-Marc.
Differential geometry applied to dynamical systems.
Hackensack, N.J. : World Scientific, 2009
(OCoLC)311763235
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Jean-Marc Ginoux
ISBN: 9789814277150 9814277150
OCLC Number: 593212992
Description: 1 online resource (xxvii, 312 pages) : illustrations.
Contents: Preface; Acknowledgments; Contents; List of Figures; List of Examples; Dynamical Systems; 1. Differential Equations; 1.1 Galileo's pendulum; 1.2 D'Alembert transformation; 1.3 From differential equations to dynamical systems; 2. Dynamical Systems; 2.1 State space --
phase space; 2.2 Definition; 2.3 Existence and uniqueness; 2.4 Flow, fixed points and null-clines; 2.5 Stability theorems; 2.5.1 Linearized system; 2.5.2 Hartman-Grobman linearization theorem; 2.5.3 Liapouno. stability theorem; 2.6 Phase portraits of dynamical systems; 2.6.1 Two-dimensional systems; 2.6.2 Three-dimensional systems. 2.7 Various types of dynamical systems2.7.1 Linear and nonlinear dynamical systems; 2.7.2 Homogeneous dynamical systems; 2.7.3 Polynomial dynamical systems; 2.7.4 Singularly perturbed systems; 2.7.5 Slow-Fast dynamical systems; 2.8 Two-dimensional dynamical systems; 2.8.1 Poincare index; 2.8.2 Poincare contact theory; 2.8.3 Poincare limit cycle; 2.8.4 Poincare-Bendixson Theorem; 2.9 High-dimensional dynamical systems; 2.9.1 Attractors; 2.9.2 Strange attractors; 2.9.3 First integrals and Lie derivative; 2.10 Hamiltonian and integrable systems; 2.10.1 Hamiltonian dynamical systems. 2.10.2 Integrable system2.10.3 K.A.M. Theorem; 3. Invariant Sets; 3.1 Manifold; 3.1.1 Definition; 3.1.2 Existence; 3.2 Invariant sets; 3.2.1 Global invariance; 3.2.2 Local invariance; 4. Local Bifurcations; 4.1 CenterManifold Theorem; 4.1.1 Center manifold theorem for flows; 4.1.2 Center manifold approximation; 4.1.3 Center manifold depending upon a parameter; 4.2 Normal FormTheorem.; 4.3 Local Bifurcations of Codimension 1; 4.3.1 Saddle-node bifurcation; 4.3.2 Transcritical bifurcation; 4.3.3 Pitchfork bifurcation; 4.3.4 Hopf bifurcation; 5. Slow-Fast Dynamical Systems; 5.1 Introduction. 5.2 Geometric Singular Perturbation Theory5.2.1 Assumptions; 5.2.2 Invariance; 5.2.3 Slow invariant manifold; 5.3 Slow-fast dynamical systems --
Singularly perturbed systems; 5.3.1 Singularly perturbed systems; 5.3.2 Slow-fast autonomous dynamical systems; 6. Integrability; 6.1 Integrability conditions, integrating factor, multiplier; 6.1.1 Two-dimensional dynamical systems; 6.1.2 Three-dimensional dynamical systems; 6.2 First integrals --
Jacobi's last multiplier theorem; 6.2.1 First integrals; 6.2.2 Jacobi's last multiplier theorem; 6.3 Darboux theory of integrability. 6.3.1 Algebraic particular integral --
General integral6.3.2 General integral; 6.3.3 Multiplier; 6.3.4 Algebraic particular integral and fixed points; 6.3.5 Homogeneous polynomial dynamical systems of degree m; 6.3.6 Homogeneous polynomial dynamical systems of degree two; 6.3.7 Planar polynomial dynamical systems; Differential Geometry; 7. Differential Geometry; 7.1 Concept of curves --
Kinematics vector functions; 7.1.1 Trajectory curve; 7.1.2 Instantaneous velocity vector; 7.1.3 Instantaneous acceleration vector; 7.2 Gram-Schmidt process --
Generalized Fr ́enet moving frame.
Series Title: World Scientific series on nonlinear science., Series A,, Monographs and treatises ;, vol. 66.; World Scientific series on nonlinear science., Series A,, Monographs and treatises ;, v. 66.
Responsibility: Jean-Marc Ginoux.

Abstract:

Presents a fresh approach called Flow Curvature Method that applies Differential Geometry to Dynamical Systems.  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/593212992> # Differential geometry applied to dynamical systems
    a schema:MediaObject, schema:CreativeWork, schema:Book ;
    library:oclcnum "593212992" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/190771615#Place/hackensack_n_j> ; # Hackensack, N.J.
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/nju> ;
    rdfs:comment "Warning: This malformed URI has been treated as a string - 'http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=477153";target="_blank'" ;
    schema:about <http://experiment.worldcat.org/entity/work/data/190771615#Topic/applied_mathematics> ; # Applied Mathematics
    schema:about <http://dewey.info/class/531.11/e22/> ;
    schema:about <http://id.worldcat.org/fast/900295> ; # Dynamics
    schema:about <http://experiment.worldcat.org/entity/work/data/190771615#Topic/science_mechanics_dynamics> ; # SCIENCE--Mechanics--Dynamics
    schema:about <http://id.worldcat.org/fast/940919> ; # Geometry, Differential
    schema:about <http://experiment.worldcat.org/entity/work/data/190771615#Topic/engineering_&_applied_sciences> ; # Engineering & Applied Sciences
    schema:bookFormat schema:EBook ;
    schema:creator <http://viaf.org/viaf/107676433> ; # Jean-Marc Ginoux
    schema:datePublished "2009" ;
    schema:description "Preface; Acknowledgments; Contents; List of Figures; List of Examples; Dynamical Systems; 1. Differential Equations; 1.1 Galileo's pendulum; 1.2 D'Alembert transformation; 1.3 From differential equations to dynamical systems; 2. Dynamical Systems; 2.1 State space -- phase space; 2.2 Definition; 2.3 Existence and uniqueness; 2.4 Flow, fixed points and null-clines; 2.5 Stability theorems; 2.5.1 Linearized system; 2.5.2 Hartman-Grobman linearization theorem; 2.5.3 Liapouno. stability theorem; 2.6 Phase portraits of dynamical systems; 2.6.1 Two-dimensional systems; 2.6.2 Three-dimensional systems."@en ;
    schema:description "This book aims to present a new approach called flow curvature method that applies differential geometry to dynamical systems. Hence, for a trajectory curve, an integral of any n-dimensional dynamical system as a curve in Euclidean n-space, the curvature of the trajectory -- or the flow -- may be analytically computed. Then, the location of the points where the curvature of the flow vanishes defines a manifold called flow curvature manifold. Such a manifold being defined from the time derivatives of the velocity vector field, contains information about the dynamics of the system, hence ..."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/190771615> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/190771615#Series/world_scientific_series_on_nonlinear_science> ; # World Scientific series on nonlinear science.
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/190771615#Series/world_scientific_series_on_nonlinear_science_series_a> ; # World scientific series on nonlinear science. Series A. ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/311763235> ;
    schema:name "Differential geometry applied to dynamical systems"@en ;
    schema:productID "593212992" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/593212992#PublicationEvent/hackensack_n_j_world_scientific_2009> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/190771615#Agent/world_scientific> ; # World Scientific
    schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=477153> ;
    schema:url <http://er.llcc.edu:2048/login?url=http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=305321> ;
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=305321> ;
    schema:url "http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=477153";target="_blank" ;
    schema:url <http://site.ebrary.com/id/10361897> ;
    schema:url <http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=477153> ;
    schema:url <http://www.myilibrary.com?id=244268> ;
    schema:url <http://ebooks.worldscinet.com/ISBN/9789814277150/9789814277150.shtml> ;
    schema:workExample <http://worldcat.org/isbn/9789814277150> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/593212992> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/190771615#Agent/world_scientific> # World Scientific
    a bgn:Agent ;
    schema:name "World Scientific" ;
    .

<http://experiment.worldcat.org/entity/work/data/190771615#Place/hackensack_n_j> # Hackensack, N.J.
    a schema:Place ;
    schema:name "Hackensack, N.J." ;
    .

<http://experiment.worldcat.org/entity/work/data/190771615#Series/world_scientific_series_on_nonlinear_science> # World Scientific series on nonlinear science.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/593212992> ; # Differential geometry applied to dynamical systems
    schema:name "World Scientific series on nonlinear science." ;
    .

<http://experiment.worldcat.org/entity/work/data/190771615#Series/world_scientific_series_on_nonlinear_science_series_a> # World scientific series on nonlinear science. Series A. ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/593212992> ; # Differential geometry applied to dynamical systems
    schema:name "World scientific series on nonlinear science. Series A. ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/190771615#Topic/applied_mathematics> # Applied Mathematics
    a schema:Intangible ;
    schema:name "Applied Mathematics"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/190771615#Topic/engineering_&_applied_sciences> # Engineering & Applied Sciences
    a schema:Intangible ;
    schema:name "Engineering & Applied Sciences"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/190771615#Topic/science_mechanics_dynamics> # SCIENCE--Mechanics--Dynamics
    a schema:Intangible ;
    schema:name "SCIENCE--Mechanics--Dynamics"@en ;
    .

<http://id.worldcat.org/fast/900295> # Dynamics
    a schema:Intangible ;
    schema:name "Dynamics"@en ;
    .

<http://id.worldcat.org/fast/940919> # Geometry, Differential
    a schema:Intangible ;
    schema:name "Geometry, Differential"@en ;
    .

<http://viaf.org/viaf/107676433> # Jean-Marc Ginoux
    a schema:Person ;
    schema:familyName "Ginoux" ;
    schema:givenName "Jean-Marc" ;
    schema:name "Jean-Marc Ginoux" ;
    .

<http://worldcat.org/isbn/9789814277150>
    a schema:ProductModel ;
    schema:isbn "9814277150" ;
    schema:isbn "9789814277150" ;
    .

<http://www.worldcat.org/oclc/311763235>
    a schema:CreativeWork ;
    rdfs:label "Differential geometry applied to dynamical systems." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/593212992> ; # Differential geometry applied to dynamical systems
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.