skip to content
Differential geometry : manifolds, curves, and surfaces Preview this item
ClosePreview this item

Differential geometry : manifolds, curves, and surfaces

Author: Marcel Berger; Bernard Gostiaux
Publisher: New York : Springer-Verlag, ©1988.
Series: Graduate texts in mathematics, 115.
Edition/Format:   Book : EnglishView all editions and formats

Presents an introduction to modern differential geometry. This book features tools from analysis and topology, including Sard's theorem, de Rham cohomology, calculus on manifolds, and a degree theory.  Read more...


(not yet rated) 0 with reviews - Be the first.

More like this


Find a copy online

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...


Additional Physical Format: Online version:
Berger, Marcel, 1927-
Differential geometry.
New York : Springer-Verlag, ©1988
Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: Marcel Berger; Bernard Gostiaux
ISBN: 0387966269 9780387966267 3540966269 9783540966265
OCLC Number: 16871620
Notes: Translation of: Géométrie différentielle.
Includes indexes.
Description: xii, 474 pages : illustrations ; 25 cm.
Contents: 0. Background.- 0.0 Notation and Recap.- 0.1 Exterior Algebra.- 0.2 Differential Calculus.- 0.3 Differential Forms.- 0.4 Integration.- 0.5 Exercises.- 1. Differential Equations.- 1.1 Generalities.- 1.2 Equations with Constant Coefficients. Existence of Local Solutions.- 1.3 Global Uniqueness and Global Flows.- 1.4 Time- and Parameter-Dependent Vector Fields.- 1.5 Time-Dependent Vector Fields: Uniqueness And Global Flow.- 1.6 Cultural Digression.- 2. Differentiable Manifolds.- 2.1 Submanifolds of Rn.- 2.2 Abstract Manifolds.- 2.3 Differentiable Maps.- 2.4 Covering Maps and Quotients.- 2.5 Tangent Spaces.- 2.6 Submanifolds, Immersions, Submersions and Embeddings.- 2.7 Normal Bundles and Tubular Neighborhoods.- 2.8 Exercises.- 3. Partitions of Unity, Densities and Curves.- 3.1 Embeddings of Compact Manifolds.- 3.2 Partitions of Unity.- 3.3 Densities.- 3.4 Classification of Connected One-Dimensional Manifolds.- 3.5 Vector Fields and Differential Equations on Manifolds.- 3.6 Exercises.- 4. Critical Points.- 4.1 Definitions and Examples.- 4.2 Non-Degenerate Critical Points.- 4.3 Sard's Theorem.- 4.4 Exercises.- 5. Differential Forms.- 5.1 The Bundle ?rT*X.- 5.2 Differential Forms on a Manifold.- 5.3 Volume Forms and Orientation.- 5.4 De Rham Groups.- 5.5 Lie Derivatives.- 5.6 Star-shaped Sets and Poincare's Lemma.- 5.7 De Rham Groups of Spheres and Projective Spaces.- 5.8 De Rham Groups of Tori.- 5.9 Exercises.- 6. Integration of Differential Forms.- 6.1 Integrating Forms of Maximal Degree.- 6.2 Stokes' Theorem.- 6.3 First Applications of Stokes' Theorem.- 6.4 Canonical Volume Forms.- 6.5 Volume of a Submanifold of Euclidean Space.- 6.6 Canonical Density on a Submanifold of Euclidean Space.- 6.7 Volume of Tubes I.- 6.8 Volume of Tubes II.- 6.9 Volume of Tubes III.- 6.10 Exercises.- 7. Degree Theory.- 7.1 Preliminary Lemmas.- 7.2 Calculation of Rd(X).- 7.3 The Degree of a Map.- 7.4 Invariance under Homotopy. Applications.- 7.5 Volume of Tubes and the Gauss-Bonnet Formula.- 7.6 Self-Maps of the Circle.- 7.7 Index of Vector Fields on Abstract Manifolds.- 7.8 Exercises.- 8. Curves: The Local Theory.- 8.0 Introduction.- 8.1 Definitions.- 8.2 Affine Invariants: Tangent, Osculating Plan, Concavity.- 8.3 Arclength.- 8.4 Curvature.- 8.5 Signed Curvature of a Plane Curve.- 8.6 Torsion of Three-Dimensional Curves.- 8.7 Exercises.- 9. Plane Curves: The Global Theory.- 9.1 Definitions.- 9.2 Jordan's Theorem.- 9.3 The Isoperimetric Inequality.- 9.4 The Turning Number.- 9.5 The Turning Tangent Theorem.- 9.6 Global Convexity.- 9.7 The Four-Vertex Theorem.- 9.8 The Fabricius-Bjerre-Halpern Formula.- 9.9 Exercises.- 10. A Guide to the Local Theory of Surfaces in R3.- 10.1 Definitions.- 10.2 Examples.- 10.3 The Two Fundamental Forms.- 10.4 What the First Fundamental Form Is Good For.- 10.5 Gaussian Curvature.- 10.6 What the Second Fundamental Form Is Good For.- 10.7 Links Between the two Fundamental Forms.- 10.8 A Word about Hypersurfaces in Rn+1.- 11. A Guide to the Global Theory of Surfaces.- 11.1 Shortest Paths.- 11.2 Surfaces of Constant Curvature.- 11.3 The Two Variation Formulas.- 11.4 Shortest Paths and the Injectivity Radius.- 11.5 Manifolds with Curvature Bounded Below.- 11.6 Manifolds with Curvature Bounded Above.- 11.7 The Gauss-Bonnet and Hopf Formulas.- 11.8 The Isoperimetric Inequality on Surfaces.- 11.9 Closed Geodesics and Isosystolic Inequalities.- 11.10 Surfaces AU of Whose Geodesics Are Closed.- 11.11 Transition: Embedding and Immersion Problems.- 11.12 Surfaces of Zero Curvature.- 11.13 Surfaces of Non-Negative Curvature.- 11.14 Uniqueness and Rigidity Results.- 11.15 Surfaces of Negative Curvature.- 11.16 Minimal Surfaces.- 11.17 Surfaces of Constant Mean Curvature, or Soap Bubbles.- 11.18 Weingarten Surfaces.- 11.19 Envelopes of Families of Planes.- 11.20 Isoperimetric Inequalities for Surfaces.- 11.21 A Pot-pourri of Characteristic Properties.- Index of Symbols and Notations.
Series Title: Graduate texts in mathematics, 115.
Other Titles: Géométrie différentielle.
Responsibility: Marcel Berger, Bernard Gostiaux ; translated from the French by Silvio Levy.
More information:


User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...


Be the first.

Similar Items

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data

schema:name"Differential geometry : manifolds, curves, and surfaces"@en

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.