passa ai contenuti
Differential geometry : Manifolds, curves, and surfaces Anteprima di questo documento
ChiudiAnteprima di questo documento
Stiamo controllando…

Differential geometry : Manifolds, curves, and surfaces

Autore: Marcel Berger; Bernard Gostiaux; Silvio Levy
Editore: Heidelberg [etc.] : Springer-Verlag ; New York ; Berlin, cop.1988.
Serie: Graduate texts in mathematics.
Edizione/Formato:   Libro : EnglishVedi tutte le edizioni e i formati
Banca dati:WorldCat
Sommario:

Presents an introduction to modern differential geometry. This book features tools from analysis and topology, including Sard's theorem, de Rham cohomology, calculus on manifolds, and a degree theory.  Per saperne di più…

Voto:

(non ancora votato) 0 con commenti - Diventa il primo.

Soggetti
Altri come questo

 

Trova una copia in biblioteca

&AllPage.SpinnerRetrieving; Stiamo ricercando le biblioteche che possiedono questo documento…

Dettagli

Genere/forma: [manuel]
Tipo documento: Book
Tutti gli autori / Collaboratori: Marcel Berger; Bernard Gostiaux; Silvio Levy
ISBN: 0387966269 9780387966267 3540966269 9783540966265
Numero OCLC: 491131246
Note: Traduit de : "Géométrie différentielle : variétés, courbes et surfaces"
Descrizione: 1 vol. (XII-474 p.) ; 25 cm.
Contenuti: 0. Background.- 0.0 Notation and Recap.- 0.1 Exterior Algebra.- 0.2 Differential Calculus.- 0.3 Differential Forms.- 0.4 Integration.- 0.5 Exercises.- 1. Differential Equations.- 1.1 Generalities.- 1.2 Equations with Constant Coefficients. Existence of Local Solutions.- 1.3 Global Uniqueness and Global Flows.- 1.4 Time- and Parameter-Dependent Vector Fields.- 1.5 Time-Dependent Vector Fields: Uniqueness And Global Flow.- 1.6 Cultural Digression.- 2. Differentiable Manifolds.- 2.1 Submanifolds of Rn.- 2.2 Abstract Manifolds.- 2.3 Differentiable Maps.- 2.4 Covering Maps and Quotients.- 2.5 Tangent Spaces.- 2.6 Submanifolds, Immersions, Submersions and Embeddings.- 2.7 Normal Bundles and Tubular Neighborhoods.- 2.8 Exercises.- 3. Partitions of Unity, Densities and Curves.- 3.1 Embeddings of Compact Manifolds.- 3.2 Partitions of Unity.- 3.3 Densities.- 3.4 Classification of Connected One-Dimensional Manifolds.- 3.5 Vector Fields and Differential Equations on Manifolds.- 3.6 Exercises.- 4. Critical Points.- 4.1 Definitions and Examples.- 4.2 Non-Degenerate Critical Points.- 4.3 Sard's Theorem.- 4.4 Exercises.- 5. Differential Forms.- 5.1 The Bundle ?rT*X.- 5.2 Differential Forms on a Manifold.- 5.3 Volume Forms and Orientation.- 5.4 De Rham Groups.- 5.5 Lie Derivatives.- 5.6 Star-shaped Sets and Poincare's Lemma.- 5.7 De Rham Groups of Spheres and Projective Spaces.- 5.8 De Rham Groups of Tori.- 5.9 Exercises.- 6. Integration of Differential Forms.- 6.1 Integrating Forms of Maximal Degree.- 6.2 Stokes' Theorem.- 6.3 First Applications of Stokes' Theorem.- 6.4 Canonical Volume Forms.- 6.5 Volume of a Submanifold of Euclidean Space.- 6.6 Canonical Density on a Submanifold of Euclidean Space.- 6.7 Volume of Tubes I.- 6.8 Volume of Tubes II.- 6.9 Volume of Tubes III.- 6.10 Exercises.- 7. Degree Theory.- 7.1 Preliminary Lemmas.- 7.2 Calculation of Rd(X).- 7.3 The Degree of a Map.- 7.4 Invariance under Homotopy. Applications.- 7.5 Volume of Tubes and the Gauss-Bonnet Formula.- 7.6 Self-Maps of the Circle.- 7.7 Index of Vector Fields on Abstract Manifolds.- 7.8 Exercises.- 8. Curves: The Local Theory.- 8.0 Introduction.- 8.1 Definitions.- 8.2 Affine Invariants: Tangent, Osculating Plan, Concavity.- 8.3 Arclength.- 8.4 Curvature.- 8.5 Signed Curvature of a Plane Curve.- 8.6 Torsion of Three-Dimensional Curves.- 8.7 Exercises.- 9. Plane Curves: The Global Theory.- 9.1 Definitions.- 9.2 Jordan's Theorem.- 9.3 The Isoperimetric Inequality.- 9.4 The Turning Number.- 9.5 The Turning Tangent Theorem.- 9.6 Global Convexity.- 9.7 The Four-Vertex Theorem.- 9.8 The Fabricius-Bjerre-Halpern Formula.- 9.9 Exercises.- 10. A Guide to the Local Theory of Surfaces in R3.- 10.1 Definitions.- 10.2 Examples.- 10.3 The Two Fundamental Forms.- 10.4 What the First Fundamental Form Is Good For.- 10.5 Gaussian Curvature.- 10.6 What the Second Fundamental Form Is Good For.- 10.7 Links Between the two Fundamental Forms.- 10.8 A Word about Hypersurfaces in Rn+1.- 11. A Guide to the Global Theory of Surfaces.- 11.1 Shortest Paths.- 11.2 Surfaces of Constant Curvature.- 11.3 The Two Variation Formulas.- 11.4 Shortest Paths and the Injectivity Radius.- 11.5 Manifolds with Curvature Bounded Below.- 11.6 Manifolds with Curvature Bounded Above.- 11.7 The Gauss-Bonnet and Hopf Formulas.- 11.8 The Isoperimetric Inequality on Surfaces.- 11.9 Closed Geodesics and Isosystolic Inequalities.- 11.10 Surfaces AU of Whose Geodesics Are Closed.- 11.11 Transition: Embedding and Immersion Problems.- 11.12 Surfaces of Zero Curvature.- 11.13 Surfaces of Non-Negative Curvature.- 11.14 Uniqueness and Rigidity Results.- 11.15 Surfaces of Negative Curvature.- 11.16 Minimal Surfaces.- 11.17 Surfaces of Constant Mean Curvature, or Soap Bubbles.- 11.18 Weingarten Surfaces.- 11.19 Envelopes of Families of Planes.- 11.20 Isoperimetric Inequalities for Surfaces.- 11.21 A Pot-pourri of Characteristic Properties.- Index of Symbols and Notations.
Titolo della serie: Graduate texts in mathematics.
Responsabilità: Marcel Berger, Bernard Gostiaux ; translated from the French by Silvio Levy.
Maggiori informazioni:

Commenti

Commenti degli utenti
Recuperando commenti GoodReads…
Stiamo recuperando commenti DOGObooks

Etichette

Diventa il primo.
Conferma questa richiesta

Potresti aver già richiesto questo documento. Seleziona OK se si vuole procedere comunque con questa richiesta.

Dati collegati


<http://www.worldcat.org/oclc/491131246>
library:oclcnum"491131246"
library:placeOfPublication
library:placeOfPublication
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/491131246>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:contributor
schema:contributor
schema:copyrightYear"op.1"
schema:creator
schema:datePublished"1988"
schema:exampleOfWork<http://worldcat.org/entity/work/id/1103195731>
schema:inLanguage"en"
schema:name"Differential geometry Manifolds, curves, and surfaces"
schema:publisher
schema:url
schema:workExample
schema:workExample

Content-negotiable representations

Chiudi finestra

Per favore entra in WorldCat 

Non hai un account? Puoi facilmente crearne uno gratuito.