skip to content
Differential manifolds Preview this item
ClosePreview this item
Checking...

Differential manifolds

Author: Serge Lang
Publisher: New York : Springer-Verlag, ©1985.
Edition/Format:   Print book : EnglishView all editions and formats
Summary:

Between advanced calculus and the three great differential theories (differential topology, differential geometry, ordinary differential equations), there lies a no-man's-land for which there exists  Read more...

Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Additional Physical Format: Online version:
Lang, Serge, 1927-2005.
Differential manifolds.
New York : Springer-Verlag, ©1985
(OCoLC)651928862
Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: Serge Lang
ISBN: 0387961135 9780387961132 3540961135 9783540961130
OCLC Number: 11467883
Notes: Revised edition of: Introduction to differentiable manifolds. 1962.
Description: ix, 230 pages : illustrations ; 24 cm
Contents: I Differential Calculus.- 1. Categories.- 2. Topological vector spaces.- 3. Derivatives and composition of map.- 4. Integration and Taylor's formula.- 5. The inverse mapping theorem.- II Manifolds.- 1. Atlases, charts, morphisms.- 2. Submanifolds, immersions, submersions.- 3. Partitions of unity.- 4. Manifolds with boundary.- III Vector Bundles.- 1. Definition, pull-backs.- 2. The tangent bundle.- 3. Exact sequences of bundles.- 4. Operations on vector bundles.- 5. Splitting of vector bundles.- IV Vector Fields and Differential Equations.- 1. Existence theorem for differential equations.- 2. Vector fields, curves, and flows.- 3. Sprays.- 4. The exponential map.- 5. Existence of tubular neighborhoods.- 6. Uniqueness of tubular neighborhoods.- V Differential Forms.- 1. Vector fields, differential operators, brackets.- 2. Lie derivative.- 3. Exterior derivative.- 4. The canonical 2-form.- 5. The Poincare lemma.- 6. Contractions and Lie derivative.- 7. Darboux theorem.- VI The Theorem of Frobenius.- 1. Statement of the theorem.- 2. Differential equations depending on a parameter.- 3. Proof of the theorem.- 4. The global formulation.- 5. Lie groups and subgroups.- VII Riemannian Metrics.- 1. Definition and functoriality.- 2. The Hilbert group.- 3. Reduction to the Hilbert group.- 4. Hilbertian tubular neighborhoods.- 5. Non-singular bilinear tensors.- 6. Riemannian metrics and sprays.- 7. The Morse-Palais lemma.- VIII Integration of Differential Forms.- 1. Sets of measure 0.- 2. Change of variables formula.- 3. Orientation.- 4. The measure associated with a differential form.- IX Stokes' Theorem.- 1. Stokes' theorem for a rectangular simplex.- 2. Stokes' theorem on a manifold.- 3. Stokes' theorem with singularities.- 4. The divergence theorem.- 5. Cauchy's theorem.- 6. The residue theorem.- The Spectral Theorem.- 1 Hilbert space.- 2 Functionals and operators.- 3 Hermitian operators.
Responsibility: Serge Lang.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/11467883> # Differential manifolds
    a schema:Book, schema:CreativeWork ;
    library:oclcnum "11467883" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/nyu> ;
    library:placeOfPublication <http://dbpedia.org/resource/New_York_City> ; # New York
    rdfs:seeAlso <http://experiment.worldcat.org/entity/work/data/57888367#CreativeWork/introduction_to_differentiable_manifolds> ; # Introduction to differentiable manifolds.
    schema:about <http://experiment.worldcat.org/entity/work/data/57888367#Topic/varietes_differentiables> ; # Variétés différentiables
    schema:about <http://id.worldcat.org/fast/893432> ; # Differentiable manifolds
    schema:about <http://experiment.worldcat.org/entity/work/data/57888367#Topic/differenzierbare_mannigfaltigkeit> ; # Differenzierbare Mannigfaltigkeit
    schema:about <http://dewey.info/class/516.36/e19/> ;
    schema:bookFormat bgn:PrintBook ;
    schema:contributor <http://viaf.org/viaf/107030972> ; # Serge Lang
    schema:copyrightYear "1985" ;
    schema:creator <http://viaf.org/viaf/107030972> ; # Serge Lang
    schema:datePublished "1985" ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/57888367> ;
    schema:inLanguage "en" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/651928862> ;
    schema:name "Differential manifolds"@en ;
    schema:productID "11467883" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/11467883#PublicationEvent/new_york_springer_verlag_1985> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/57888367#Agent/springer_verlag> ; # Springer-Verlag
    schema:url <http://www.gbv.de/dms/hbz/toc/ht002734211.pdf> ;
    schema:url <http://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=2020204&custom_att_2=simple_viewer> ;
    schema:workExample <http://worldcat.org/isbn/9780387961132> ;
    schema:workExample <http://worldcat.org/isbn/9783540961130> ;
    umbel:isLike <http://d-nb.info/850411939> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/11467883> ;
    .


Related Entities

<http://dbpedia.org/resource/New_York_City> # New York
    a schema:Place ;
    schema:name "New York" ;
    .

<http://experiment.worldcat.org/entity/work/data/57888367#Agent/springer_verlag> # Springer-Verlag
    a bgn:Agent ;
    schema:name "Springer-Verlag" ;
    .

<http://experiment.worldcat.org/entity/work/data/57888367#CreativeWork/introduction_to_differentiable_manifolds> # Introduction to differentiable manifolds.
    a schema:CreativeWork ;
    schema:creator <http://viaf.org/viaf/107030972> ; # Serge Lang
    schema:name "Introduction to differentiable manifolds." ;
    .

<http://experiment.worldcat.org/entity/work/data/57888367#Topic/differenzierbare_mannigfaltigkeit> # Differenzierbare Mannigfaltigkeit
    a schema:Intangible ;
    schema:name "Differenzierbare Mannigfaltigkeit"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/57888367#Topic/varietes_differentiables> # Variétés différentiables
    a schema:Intangible ;
    schema:name "Variétés différentiables"@fr ;
    .

<http://id.worldcat.org/fast/893432> # Differentiable manifolds
    a schema:Intangible ;
    schema:name "Differentiable manifolds"@en ;
    .

<http://viaf.org/viaf/107030972> # Serge Lang
    a schema:Person ;
    schema:birthDate "1927" ;
    schema:deathDate "2005" ;
    schema:familyName "Lang" ;
    schema:givenName "Serge" ;
    schema:name "Serge Lang" ;
    .

<http://worldcat.org/isbn/9780387961132>
    a schema:ProductModel ;
    schema:isbn "0387961135" ;
    schema:isbn "9780387961132" ;
    .

<http://worldcat.org/isbn/9783540961130>
    a schema:ProductModel ;
    schema:isbn "3540961135" ;
    schema:isbn "9783540961130" ;
    .

<http://www.worldcat.org/oclc/651928862>
    a schema:CreativeWork ;
    rdfs:label "Differential manifolds." ;
    schema:description "Online version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/11467883> ; # Differential manifolds
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.