skip to content
Directional Derivatives in the Direction of the Vector : Calculus-Partial Derivatives: Directional Derivatives Preview this item
ClosePreview this item
Checking...

Directional Derivatives in the Direction of the Vector : Calculus-Partial Derivatives: Directional Derivatives

Author: Films Media Group,; KM Media,
Publisher: [Place of publication not identified] : KM Media, New York, N.Y. : Distributed by Films Media Group, [2015] 2015. ©2015
Series: Calculus., Partial Derivatives., Directional Derivatives.; Partial Derivatives., Directional Derivatives.
Edition/Format:   eVideo : Clipart/images/graphics : EnglishView all editions and formats
Summary:
Given a multivariable function (a surface in three-dimensional space), the directional derivative in the direction of a vector represents the slope of the function (how fast the function is changing), at a particular point, in the direction that the vector is pointing.
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Educational films
Internet videos
Films on Demand
Additional Physical Format: Digital transfer of (manifestation):
KM Media, 2015
Material Type: Clipart/images/graphics, Internet resource, Videorecording
Document Type: Internet Resource, Computer File, Visual material
All Authors / Contributors: Films Media Group,; KM Media,
OCLC Number: 935945323
Language Note: Closed-captioned.
Notes: Streaming video file encoded with permission for digital streaming by Films Media Group on April 25, 2015.
Title from distributor's description (Films Media Group, November 04, 2015).
Target Audience: 9-12.
Description: 1 online resource (1 video file (5 min., 54 sec.)) : sound, color.
Contents: Directional Derivatives in the Direction of the Vector: Calculus-Partial Derivatives: Directional Derivatives (5:54).
Series Title: Calculus., Partial Derivatives., Directional Derivatives.; Partial Derivatives., Directional Derivatives.
Other Titles: Calculus-Partial Derivatives: Directional Derivatives
Responsibility: KM Media.

Abstract:

Given a multivariable function (a surface in three-dimensional space), the directional derivative in the direction of a vector represents the slope of the function (how fast the function is changing), at a particular point, in the direction that the vector is pointing.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Related Subjects:(1)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/935945323> # Directional Derivatives in the Direction of the Vector : Calculus-Partial Derivatives: Directional Derivatives
    a schema:Movie, schema:CreativeWork, schema:VideoObject ;
    library:oclcnum "935945323" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/nyu> ;
    rdfs:comment "Unknown 'gen' value: cig" ;
    schema:about <http://experiment.worldcat.org/entity/work/data/2895221988#Topic/directional_derivatives> ; # Directional derivatives
    schema:alternateName "Calculus-Partial Derivatives: Directional Derivatives" ;
    schema:contentRating "9-12." ;
    schema:contributor <http://experiment.worldcat.org/entity/work/data/2895221988#Organization/films_media_group> ; # Films Media Group,
    schema:description "Given a multivariable function (a surface in three-dimensional space), the directional derivative in the direction of a vector represents the slope of the function (how fast the function is changing), at a particular point, in the direction that the vector is pointing."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/2895221988> ;
    schema:genre "Films on Demand"@en ;
    schema:genre "Educational films"@en ;
    schema:genre "Internet videos"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/2895221988#Series/calculus> ; # Calculus.
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/2895221988#Series/partial_derivatives> ; # Partial Derivatives.
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/2895221988#Series/calculus_partial_derivatives_directional_derivatives> ; # Calculus-Partial Derivatives: Directional Derivatives
    schema:isSimilarTo <http://worldcat.org/entity/work/data/2895221988#CreativeWork/> ;
    schema:name "Directional Derivatives in the Direction of the Vector : Calculus-Partial Derivatives: Directional Derivatives"@en ;
    schema:productID "935945323" ;
    schema:productionCompany <http://experiment.worldcat.org/entity/work/data/2895221988#Organization/km_media> ; # KM Media,
    schema:url <http://fod.infobase.com/PortalPlaylists.aspx?wID=97320&xtid=75315> ;
    schema:url <http://proxy.library.carleton.ca/login?url=http://fod.infobase.com/PortalPlaylists.aspx?wID=104730&xtid=75315> ;
    schema:url <http://wsuproxy.mnpals.net/login?url=http://fod.infobase.com/PortalPlaylists.aspx?wID=10573&xtid=75315> ;
    schema:url <http://digital.films.com/PortalPlaylists.aspx?aid=13753&xtid=75315> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/935945323> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/2895221988#Series/calculus> # Calculus.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/935945323> ; # Directional Derivatives in the Direction of the Vector : Calculus-Partial Derivatives: Directional Derivatives
    schema:name "Calculus." ;
    .

<http://experiment.worldcat.org/entity/work/data/2895221988#Series/calculus_partial_derivatives_directional_derivatives> # Calculus-Partial Derivatives: Directional Derivatives
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/935945323> ; # Directional Derivatives in the Direction of the Vector : Calculus-Partial Derivatives: Directional Derivatives
    schema:name "Calculus-Partial Derivatives: Directional Derivatives" ;
    .

<http://experiment.worldcat.org/entity/work/data/2895221988#Series/partial_derivatives> # Partial Derivatives.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/935945323> ; # Directional Derivatives in the Direction of the Vector : Calculus-Partial Derivatives: Directional Derivatives
    schema:name "Partial Derivatives." ;
    .

<http://experiment.worldcat.org/entity/work/data/2895221988#Topic/directional_derivatives> # Directional derivatives
    a schema:Intangible ;
    schema:name "Directional derivatives"@en ;
    .

<http://fod.infobase.com/PortalPlaylists.aspx?wID=97320&xtid=75315>
    rdfs:comment "Part of the Films on Demand collection." ;
    .

<http://worldcat.org/entity/work/data/2895221988#CreativeWork/>
    a schema:CreativeWork ;
    schema:description "Digital transfer of (manifestation):" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/935945323> ; # Directional Derivatives in the Direction of the Vector : Calculus-Partial Derivatives: Directional Derivatives
    .

<http://www.worldcat.org/title/-/oclc/935945323>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
    schema:about <http://www.worldcat.org/oclc/935945323> ; # Directional Derivatives in the Direction of the Vector : Calculus-Partial Derivatives: Directional Derivatives
    schema:dateModified "2018-07-13" ;
    void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.