skip to content
The Dissimilarity Representation For Pattern Recognition : Foundations And Applications. Preview this item
ClosePreview this item
Checking...

The Dissimilarity Representation For Pattern Recognition : Foundations And Applications.

Author: Elzbieta Pekalska; Robert P W Duin
Publisher: Singapore : World Scientific, 2005.
Series: Series in machine perception and artificial intelligence, v. 64.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
This book provides a fundamentally new approach to pattern recognition in which objects are characterized by relations to other objects instead of by using features or models. This 'dissimilarity representation' bridges the gap between the traditionally opposing approaches of statistical and structural pattern recognition. Physical phenomena, objects and events in the world are related in various and often complex  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Elzbieta Pekalska; Robert P W Duin
ISBN: 9789812703170 9812703179
OCLC Number: 476063399
Description: 1 online resource (634 pages).
Contents: 1. Introduction. 1.1. Recognizing the pattern. 1.2. Dissimilarities for representation. 1.3. Learning from examples. 1.4. Motivation of the use of dissimilarity representations. 1.5. Relation to kernels. 1.6. Outline of the book. 1.7. In summary --
2. Spaces. 2.1. Preliminaries. 2.2. A brief look at spaces. 2.3. Generalized topological spaces. 2.4. Generalized metric spaces. 2.5. Vector spaces. 2.6. Normed and inner product spaces. 2.7. Indefinite inner product spaces. 2.8. Discussion --
3. Characterization of dissimilarities. 3.1. Embeddings, tree models and transformations. 3.2. Tree models for dissimilarities. 3.3. Useful transformations. 3.4. Properties of dissimilarity matrices. 3.5. Linear embeddings of dissimilarities. 3.6. Spatial representation of dissimilarities. 3.7. Summary --
4. Learning approaches. 4.1. Traditional learning. 4.2. The role of dissimilarity representations. 4.3. Classification in generalized topological spaces. 4.4. Classification in dissimilarity spaces. 4.5. Classification in pseudo-Euclidean spaces. 4.6. On generalized kernels and dissimilarity spaces. 4.7. Discussion --
5. Dissimilarity measures. 5.1. Measures depending on feature types. 5.2. Measures between populations. 5.3. Dissimilarity measures between sequences. 5.4. Information-theoretic measures. 5.5. Dissimilarity measures between sets. 5.6. Dissimilarity measures in applications. 5.7. Discussion and conclusions --
6. Visualization. 6.1. Multidimensional scaling. 6.2. Other mappings. 6.3. Examples : getting insight into the data. 6.4. Tree models. 6.5. Summary --
7. Flirther data exploration. 7.1. Clustering. 7.2. Intrinsic dimension. 7.3. Sampling density. 7.4. Summary --
8. One-class classifiers. 8.1. General issues. 8.2. Domain descriptors for dissimilarity representations. 8.3. Experiments. 8.4. Conclusions --
9. Classification. 9.1. Proof of principle. 9.2. Selection of the representation set : the dissimilarity space approach. 9.3. Selection of the representation set : the embedding approach. 9.4. On corrections of dissimilarity measures. 9.5. A few remarks on a simulated missing value problem. 9.6. Existence of zero-error dissimilarity-based classifiers. 9.7. Final discussion --
10. Combining. 10.1. Combining for one-class classification. 10.2. Combining for standard two-class classification. 10.3. Classifier projection space. 10.4. Summary --
11. Representation review and recommendations. 11.1. Representation review. 11.2. Practical considerations --
12. Conclusions and open problems. 12.1. Summary and contributions. 12.2. Extensions of dissimilarity representations. 12.3. Open questions.
Series Title: Series in machine perception and artificial intelligence, v. 64.

Abstract:

Provides an approach to pattern recognition in which objects are characterized by relations to other objects instead of by using features or models. This book is intended for researchers and systems  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/476063399> # The Dissimilarity Representation For Pattern Recognition : Foundations And Applications.
    a schema:MediaObject, schema:CreativeWork, schema:Book ;
    library:oclcnum "476063399" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/794152195#Place/singapore> ; # Singapore
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/si> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/794152195#Topic/pattern_recognition_systems> ; # Pattern recognition systems
    schema:about <http://id.worldcat.org/fast/1055266> ; # Pattern recognition systems
    schema:about <http://dewey.info/class/006.4/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/794152195#Topic/pattern_perception> ; # Pattern perception
    schema:about <http://id.worldcat.org/fast/1055254> ; # Pattern perception
    schema:bookFormat schema:EBook ;
    schema:contributor <http://viaf.org/viaf/287454145> ; # Robert P. W. Duin
    schema:creator <http://viaf.org/viaf/51210470> ; # Elzbieta Pekalska
    schema:datePublished "2005" ;
    schema:description "This book provides a fundamentally new approach to pattern recognition in which objects are characterized by relations to other objects instead of by using features or models. This 'dissimilarity representation' bridges the gap between the traditionally opposing approaches of statistical and structural pattern recognition. Physical phenomena, objects and events in the world are related in various and often complex ways. Such relations are usually modeled in the form of graphs or diagrams. While this is useful for communication between experts, such representation is difficult to combine and in."@en ;
    schema:description "1. Introduction. 1.1. Recognizing the pattern. 1.2. Dissimilarities for representation. 1.3. Learning from examples. 1.4. Motivation of the use of dissimilarity representations. 1.5. Relation to kernels. 1.6. Outline of the book. 1.7. In summary -- 2. Spaces. 2.1. Preliminaries. 2.2. A brief look at spaces. 2.3. Generalized topological spaces. 2.4. Generalized metric spaces. 2.5. Vector spaces. 2.6. Normed and inner product spaces. 2.7. Indefinite inner product spaces. 2.8. Discussion -- 3. Characterization of dissimilarities. 3.1. Embeddings, tree models and transformations. 3.2. Tree models for dissimilarities. 3.3. Useful transformations. 3.4. Properties of dissimilarity matrices. 3.5. Linear embeddings of dissimilarities. 3.6. Spatial representation of dissimilarities. 3.7. Summary -- 4. Learning approaches. 4.1. Traditional learning. 4.2. The role of dissimilarity representations. 4.3. Classification in generalized topological spaces. 4.4. Classification in dissimilarity spaces. 4.5. Classification in pseudo-Euclidean spaces. 4.6. On generalized kernels and dissimilarity spaces. 4.7. Discussion -- 5. Dissimilarity measures. 5.1. Measures depending on feature types. 5.2. Measures between populations. 5.3. Dissimilarity measures between sequences. 5.4. Information-theoretic measures. 5.5. Dissimilarity measures between sets. 5.6. Dissimilarity measures in applications. 5.7. Discussion and conclusions -- 6. Visualization. 6.1. Multidimensional scaling. 6.2. Other mappings. 6.3. Examples : getting insight into the data. 6.4. Tree models. 6.5. Summary -- 7. Flirther data exploration. 7.1. Clustering. 7.2. Intrinsic dimension. 7.3. Sampling density. 7.4. Summary -- 8. One-class classifiers. 8.1. General issues. 8.2. Domain descriptors for dissimilarity representations. 8.3. Experiments. 8.4. Conclusions -- 9. Classification. 9.1. Proof of principle. 9.2. Selection of the representation set : the dissimilarity space approach. 9.3. Selection of the representation set : the embedding approach. 9.4. On corrections of dissimilarity measures. 9.5. A few remarks on a simulated missing value problem. 9.6. Existence of zero-error dissimilarity-based classifiers. 9.7. Final discussion -- 10. Combining. 10.1. Combining for one-class classification. 10.2. Combining for standard two-class classification. 10.3. Classifier projection space. 10.4. Summary -- 11. Representation review and recommendations. 11.1. Representation review. 11.2. Practical considerations -- 12. Conclusions and open problems. 12.1. Summary and contributions. 12.2. Extensions of dissimilarity representations. 12.3. Open questions."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/794152195> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/794152195#Series/series_in_machine_perception_and_artificial_intelligence> ; # Series in machine perception and artificial intelligence ;
    schema:isSimilarTo <http://worldcat.org/entity/work/data/794152195#CreativeWork/> ;
    schema:name "The Dissimilarity Representation For Pattern Recognition : Foundations And Applications."@en ;
    schema:productID "476063399" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/476063399#PublicationEvent/singapore_world_scientific_2005> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/794152195#Agent/world_scientific> ; # World Scientific
    schema:url <https://ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=296110> ;
    schema:url <http://www.worldscientific.com/worldscibooks/10.1142/5965#t=toc> ;
    schema:url <http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=296110> ;
    schema:url <https://ebookcentral.proquest.com/lib/columbia/detail.action?docID=296110> ;
    schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=296110> ;
    schema:workExample <http://worldcat.org/isbn/9789812703170> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/476063399> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/794152195#Agent/world_scientific> # World Scientific
    a bgn:Agent ;
    schema:name "World Scientific" ;
    .

<http://experiment.worldcat.org/entity/work/data/794152195#Series/series_in_machine_perception_and_artificial_intelligence> # Series in machine perception and artificial intelligence ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/476063399> ; # The Dissimilarity Representation For Pattern Recognition : Foundations And Applications.
    schema:name "Series in machine perception and artificial intelligence ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/794152195#Topic/pattern_perception> # Pattern perception
    a schema:Intangible ;
    schema:name "Pattern perception"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/794152195#Topic/pattern_recognition_systems> # Pattern recognition systems
    a schema:Intangible ;
    schema:name "Pattern recognition systems"@en ;
    .

<http://id.worldcat.org/fast/1055254> # Pattern perception
    a schema:Intangible ;
    schema:name "Pattern perception"@en ;
    .

<http://id.worldcat.org/fast/1055266> # Pattern recognition systems
    a schema:Intangible ;
    schema:name "Pattern recognition systems"@en ;
    .

<http://viaf.org/viaf/287454145> # Robert P. W. Duin
    a schema:Person ;
    schema:familyName "Duin" ;
    schema:givenName "Robert P. W." ;
    schema:name "Robert P. W. Duin" ;
    .

<http://viaf.org/viaf/51210470> # Elzbieta Pekalska
    a schema:Person ;
    schema:familyName "Pekalska" ;
    schema:givenName "Elzbieta" ;
    schema:name "Elzbieta Pekalska" ;
    .

<http://worldcat.org/entity/work/data/794152195#CreativeWork/>
    a schema:CreativeWork ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/476063399> ; # The Dissimilarity Representation For Pattern Recognition : Foundations And Applications.
    .

<http://worldcat.org/isbn/9789812703170>
    a schema:ProductModel ;
    schema:isbn "9812703179" ;
    schema:isbn "9789812703170" ;
    .

<http://www.worldcat.org/title/-/oclc/476063399>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
    schema:about <http://www.worldcat.org/oclc/476063399> ; # The Dissimilarity Representation For Pattern Recognition : Foundations And Applications.
    schema:dateModified "2018-04-26" ;
    void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.