skip to content
Distribution theory and Fourier analysis. Preview this item
ClosePreview this item

Distribution theory and Fourier analysis.

Author: Lars Hörmander
Publisher: Berlin [u.a.] : Springer, 1990.
Series: Grundlehren der mathematischen Wissenschaften, 256.; Analysis of linear partial differential operators / Lars Hörmander, 1.
Edition/Format:   Book : English : 2. edView all editions and formats

(not yet rated) 0 with reviews - Be the first.


Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...


Document Type: Book
All Authors / Contributors: Lars Hörmander
ISBN: 038752343X 9780387523439 0387523456 9780387523453 354052343X 9783540523437 3540523456 9783540523451
OCLC Number: 256139072
Description: XI, 440 S : ill.
Contents: I. Test Functions.- Summary.- 1.1. A review of Differential Calculus.- 1.2. Existence of Test Functions.- 1.3. Convolution.- 1.4. Cutoff Functions and Partitions of Unity.- Notes.- II. Definition and Basic Properties of Distributions.- Summary.- 2.1. Basic Definitions.- 2.2. Localization.- 2.3. Distributions with Compact Support.- Notes.- III. Differentiation and Multiplication by Functions.- Summary.- 3.1. Definition and Examples.- 3.2. Homogeneous Distributions.- 3.3. Some Fundamental Solutions.- 3.4. Evaluation of Some Integrals.- Notes.- IV. Convolution.- Summary.- 4.1. Convolution with a Smooth Function.- 4.2. Convolution of Distributions.- 4.3. The Theorem of Supports.- 4.4. The Role of Fundamental Solutions.- 4.5. Basic Lp Estimates for Convolutions.- Notes.- V. Distributions in Product Spaces.- Summary.- 5.1. Tensor Products.- 5.2. The Kernel Theorem.- Notes.- VI. Composition with Smooth Maps.- Summary.- 6.1. Definitions.- 6.2. Some Fundamental Solutions.- 6.3. Distributions on a Manifold.- 6.4. The Tangent and Cotangent Bundles.- Notes.- VII. The Fourier Transformation.- Summary.- 7.1. The Fourier Transformation in ? and in ?'.- 7.2. Poisson's Summation Formula and Periodic Distributions.- 7.3. The Fourier-Laplace Transformation in ?'.- 7.4. More General Fourier-Laplace Transforms.- 7.5. The Malgrange Preparation Theorem.- 7.6. Fourier Transforms of Gaussian Functions.- 7.7. The Method of Stationary Phase.- 7.8. Oscillatory Integrals.- 7.9. H(s), Lp and Holder Estimates.- Notes.- VIII. Spectral Analysis of Singularities.- Summary.- 8.1. The Wave Front Set.- 8.2. A Review of Operations with Distributions.- 8.3. The Wave Front Set of Solutions of Partial Differential Equations.- 8.4. The Wave Front Set with Respect to CL.- 8.5. Rules of Computation for WFL.- 8.6. WFL for Solutions of Partial Differential Equations.- 8.7. Microhyperbolicity.- Notes.- IX. Hyperfunctions.- Summary.- 9.1. Analytic Functionals.- 9.2. General Hyperfunctions.- 9.3. The Analytic Wave Front Set of a Hyperfunction.- 9.4. The Analytic Cauchy Problem.- 9.5. Hyperfunction Solutions of Partial Differential Equations.- 9.6. The Analytic Wave Front Set and the Support.- Notes.- Exercises.- Answers and Hints to All the Exercises.- Index of Notation.
Series Title: Grundlehren der mathematischen Wissenschaften, 256.; Analysis of linear partial differential operators / Lars Hörmander, 1.
More information:


Editorial reviews

Publisher Synopsis

.,." it is the best now available in print. ... All the theorems are there (among them the Schwartz kernel theorem), and all they have ... proofs." Bulletin of the American Mathematical Society Read more...

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...


Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data

schema:bookEdition"2. ed."
schema:name"Distribution theory and Fourier analysis."

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.