přejít na obsah
Dynamic optimality and multi-splay trees Náhled dokumentu
ZavřítNáhled dokumentu
Probíhá kontrola...

Dynamic optimality and multi-splay trees

Autor Daniel D Sleator; Chengwen Chris Wang
Vydavatel: Pittsburgh, Pa. : School of Computer Science, Carnegie Mellon University, [2004]
Edice: Research paper (Carnegie Mellon University. School of Computer Science), CMU-CS-04-171.
Vydání/formát:   Kniha : English
Databáze:WorldCat
Shrnutí:
Abstract: "The Dynamic Optimality Conjecture [ST85] states that splay trees are competitive (with a constant competitive factor) among the class of all binary search tree (BST) algorithms. Despite 20 years of research this conjecture is still unresolved. Recently Demaine et al. [DHIP04] suggested searching for alternative algorithms which have small, but non-constant competitive factors. They proposed tango, a BST  Přečíst více...
Hodnocení:

(ještě nehodnoceno) 0 zobrazit recenze - Buďte první.

Předmětová hesla:
Více podobných

 

Najít online exemplář

Odkazy na tento dokument

Vyhledat exemplář v knihovně

&AllPage.SpinnerRetrieving; Vyhledávání knihoven, které vlastní tento dokument...

Detaily

Typ materiálu: Internetový zdroj
Typ dokumentu: Book, Internet Resource
Všichni autoři/tvůrci: Daniel D Sleator; Chengwen Chris Wang
OCLC číslo: 57217789
Poznámky: "November 5, 2004."
Popis: 12 p. : ill. ; 28 cm.
Název edice: Research paper (Carnegie Mellon University. School of Computer Science), CMU-CS-04-171.
Odpovědnost: Daniel Dominic Sleator and Chengwen Chris Wang.

Anotace:

Abstract: "The Dynamic Optimality Conjecture [ST85] states that splay trees are competitive (with a constant competitive factor) among the class of all binary search tree (BST) algorithms. Despite 20 years of research this conjecture is still unresolved. Recently Demaine et al. [DHIP04] suggested searching for alternative algorithms which have small, but non-constant competitive factors. They proposed tango, a BST algorithm which is nearly dynamically optimal -- its competitive ratio is O(log log n) instead of a constant. Unfortunately, for many access patterns, tango is worse than other BST algorithms by a factor of log log n. In this paper we introduce multi-splay trees, which can be viewed as a variant of splay trees. We prove the multi-splay access lemma, which resembles the access lemma for splay trees. With different assignment of weights, this lemma allows us to prove various bounds on the performance of multi-splay trees. Specifically, we prove that multi-splay trees are O(log log n)-competitive, and amortized O(log n). This is the first BST data structure to simultaneously achieve these two bounds. In addition, the algorithm is simple enough that we include code for its key parts."

Recenze

Recenze vložené uživatelem
Nahrávání recenzí GoodReads...
Přebírání recenzí DOGO books...

Štítky

Buďte první.

Podobné dokumenty

Související předmětová hesla:(3)

Potvrdit tento požadavek

Tento dokument jste si již vyžádali. Prosím vyberte Ok pokud chcete přesto v žádance pokračovat.

Propojená data


<http://www.worldcat.org/oclc/57217789>
library:oclcnum"57217789"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/57217789>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:contributor
schema:creator
schema:datePublished"2004"
schema:description"Abstract: "The Dynamic Optimality Conjecture [ST85] states that splay trees are competitive (with a constant competitive factor) among the class of all binary search tree (BST) algorithms. Despite 20 years of research this conjecture is still unresolved. Recently Demaine et al. [DHIP04] suggested searching for alternative algorithms which have small, but non-constant competitive factors. They proposed tango, a BST algorithm which is nearly dynamically optimal -- its competitive ratio is O(log log n) instead of a constant. Unfortunately, for many access patterns, tango is worse than other BST algorithms by a factor of log log n. In this paper we introduce multi-splay trees, which can be viewed as a variant of splay trees. We prove the multi-splay access lemma, which resembles the access lemma for splay trees. With different assignment of weights, this lemma allows us to prove various bounds on the performance of multi-splay trees. Specifically, we prove that multi-splay trees are O(log log n)-competitive, and amortized O(log n). This is the first BST data structure to simultaneously achieve these two bounds. In addition, the algorithm is simple enough that we include code for its key parts.""
schema:exampleOfWork<http://worldcat.org/entity/work/id/17589306>
schema:inLanguage"en"
schema:name"Dynamic optimality and multi-splay trees"
schema:numberOfPages"12"
schema:publisher
schema:url

Content-negotiable representations

Zavřít okno

Prosím přihlaste se do WorldCat 

Nemáte účet? Můžete si jednoduše vytvořit bezplatný účet.