doorgaan naar inhoud
Dynamic optimality and multi-splay trees Voorbeeldweergave van dit item
SluitenVoorbeeldweergave van dit item
Bezig met controle...

Dynamic optimality and multi-splay trees

Auteur: Daniel D Sleator; Chengwen Chris Wang
Uitgever: Pittsburgh, Pa. : School of Computer Science, Carnegie Mellon University, [2004]
Serie: Research paper (Carnegie Mellon University. School of Computer Science), CMU-CS-04-171.
Editie/Formaat:   Boek : Engels
Database:WorldCat
Samenvatting:
Abstract: "The Dynamic Optimality Conjecture [ST85] states that splay trees are competitive (with a constant competitive factor) among the class of all binary search tree (BST) algorithms. Despite 20 years of research this conjecture is still unresolved. Recently Demaine et al. [DHIP04] suggested searching for alternative algorithms which have small, but non-constant competitive factors. They proposed tango, a BST  Meer lezen...
Beoordeling:

(nog niet beoordeeld) 0 met beoordelingen - U bent de eerste

Onderwerpen
Meer in deze trant

 

Zoeken naar een online exemplaar

Links naar dit item

Zoeken naar een in de bibliotheek beschikbaar exemplaar

&AllPage.SpinnerRetrieving; Bibliotheken met dit item worden gezocht…

Details

Genre: Internetbron
Soort document: Boek, Internetbron
Alle auteurs / medewerkers: Daniel D Sleator; Chengwen Chris Wang
OCLC-nummer: 57217789
Opmerkingen: "November 5, 2004."
Beschrijving: 12 p. : ill. ; 28 cm.
Serietitel: Research paper (Carnegie Mellon University. School of Computer Science), CMU-CS-04-171.
Verantwoordelijkheid: Daniel Dominic Sleator and Chengwen Chris Wang.

Fragment:

Abstract: "The Dynamic Optimality Conjecture [ST85] states that splay trees are competitive (with a constant competitive factor) among the class of all binary search tree (BST) algorithms. Despite 20 years of research this conjecture is still unresolved. Recently Demaine et al. [DHIP04] suggested searching for alternative algorithms which have small, but non-constant competitive factors. They proposed tango, a BST algorithm which is nearly dynamically optimal -- its competitive ratio is O(log log n) instead of a constant. Unfortunately, for many access patterns, tango is worse than other BST algorithms by a factor of log log n. In this paper we introduce multi-splay trees, which can be viewed as a variant of splay trees. We prove the multi-splay access lemma, which resembles the access lemma for splay trees. With different assignment of weights, this lemma allows us to prove various bounds on the performance of multi-splay trees. Specifically, we prove that multi-splay trees are O(log log n)-competitive, and amortized O(log n). This is the first BST data structure to simultaneously achieve these two bounds. In addition, the algorithm is simple enough that we include code for its key parts."

Beoordelingen

Beoordelingen door gebruikers
Beoordelingen van GoodReads worden opgehaald...
Bezig met opvragen DOGObooks-reviews...

Tags

U bent de eerste.

Vergelijkbare items

Bevestig deze aanvraag

Misschien heeft u dit item reeds aangevraagd. Selecteer a.u.b. Ok als u toch wilt doorgaan met deze aanvraag.

Gekoppelde data


<http://www.worldcat.org/oclc/57217789>
library:oclcnum"57217789"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/57217789>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:contributor
schema:creator
schema:datePublished"2004"
schema:description"Abstract: "The Dynamic Optimality Conjecture [ST85] states that splay trees are competitive (with a constant competitive factor) among the class of all binary search tree (BST) algorithms. Despite 20 years of research this conjecture is still unresolved. Recently Demaine et al. [DHIP04] suggested searching for alternative algorithms which have small, but non-constant competitive factors. They proposed tango, a BST algorithm which is nearly dynamically optimal -- its competitive ratio is O(log log n) instead of a constant. Unfortunately, for many access patterns, tango is worse than other BST algorithms by a factor of log log n. In this paper we introduce multi-splay trees, which can be viewed as a variant of splay trees. We prove the multi-splay access lemma, which resembles the access lemma for splay trees. With different assignment of weights, this lemma allows us to prove various bounds on the performance of multi-splay trees. Specifically, we prove that multi-splay trees are O(log log n)-competitive, and amortized O(log n). This is the first BST data structure to simultaneously achieve these two bounds. In addition, the algorithm is simple enough that we include code for its key parts.""
schema:exampleOfWork<http://worldcat.org/entity/work/id/17589306>
schema:inLanguage"en"
schema:name"Dynamic optimality and multi-splay trees"
schema:numberOfPages"12"
schema:publisher
schema:url

Content-negotiable representations

Venster sluiten

Meld u aan bij WorldCat 

Heeft u geen account? U kunt eenvoudig een nieuwe gratis account aanmaken.