přejít na obsah
The dynamics of nonlinear reaction-diffusion equations with small lévy noise Náhled dokumentu
ZavřítNáhled dokumentu
Probíhá kontrola...

The dynamics of nonlinear reaction-diffusion equations with small lévy noise

Autor Arnaud Debussche
Vydavatel: Cham, Switzerland : Springer, ©2013.
Edice: Lecture notes in mathematics (Springer-Verlag), 2085.
Vydání/formát:   e-kniha : Document : EnglishZobrazit všechny vydání a formáty
Databáze:WorldCat
Shrnutí:
This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and  Přečíst více...
Hodnocení:

(ještě nehodnoceno) 0 zobrazit recenze - Buďte první.

Předmětová hesla:
Více podobných

 

Najít online exemplář

Odkazy na tento dokument

Vyhledat exemplář v knihovně

&AllPage.SpinnerRetrieving; Vyhledávání knihoven, které vlastní tento dokument...

Detaily

Doplňující formát: Printed edition:
Typ materiálu: Document, Internetový zdroj
Typ dokumentu: Internet Resource, Computer File
Všichni autoři/tvůrci: Arnaud Debussche
ISBN: 9783319008288 3319008285
OCLC číslo: 859522804
Popis: 1 online resource (xiii, 163 pages) : color illustrations.
Obsahy: The Fine Dynamics of the Chafee-Infante Equation --
The Stochastic Chafee-Infante Equation --
The Small Deviation of the Small Noise Solution --
Asymptotic Exit Times --
Asymptotic Transition Times --
Localization and Metastability.
Název edice: Lecture notes in mathematics (Springer-Verlag), 2085.
Odpovědnost: Arnaud Debussche, Michael Högele, Peter Imkeller.
Více informací:

Anotace:

This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states.

Recenze

Recenze vložené uživatelem
Nahrávání recenzí GoodReads...
Přebírání recenzí DOGO books...

Štítky

Buďte první.

Podobné dokumenty

Související předmětová hesla:(2)

Potvrdit tento požadavek

Tento dokument jste si již vyžádali. Prosím vyberte Ok pokud chcete přesto v žádance pokračovat.

Propojená data


Primary Entity

<http://www.worldcat.org/oclc/859522804> # The dynamics of nonlinear reaction-diffusion equations with small lévy noise
    a schema:CreativeWork, schema:Book, schema:MediaObject ;
    library:oclcnum "859522804" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/sz> ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/1427206843#Place/cham_switzerland> ; # Cham, Switzerland
    schema:about <http://id.worldcat.org/fast/1004416> ; # Lévy processes
    schema:about <http://id.worldcat.org/fast/1133516> ; # Stochastic partial differential equations
    schema:about <http://dewey.info/class/515.353/e23/> ;
    schema:bookFormat schema:EBook ;
    schema:copyrightYear "2013" ;
    schema:creator <http://viaf.org/viaf/305044974> ; # Arnaud Debussche
    schema:datePublished "2013" ;
    schema:description "This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/1427206843> ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/1427206843#Series/lecture_notes_in_mathematics_springer_verlag> ; # Lecture notes in mathematics (Springer-Verlag) ;
    schema:isPartOf <http://worldcat.org/issn/1617-9692> ; # Lecture notes in mathematics,
    schema:isSimilarTo <http://worldcat.org/entity/work/data/1427206843#CreativeWork/> ;
    schema:name "The dynamics of nonlinear reaction-diffusion equations with small lévy noise"@en ;
    schema:productID "859522804" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/859522804#PublicationEvent/cham_switzerland_springer_2013> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/1427206843#Agent/springer> ; # Springer
    schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=3107036> ;
    schema:url <http://dx.doi.org/10.1007/978-3-319-00828-8> ;
    schema:url <http://link.springer.com/book/10.1007/978-3-319-00828-8> ;
    schema:workExample <http://worldcat.org/isbn/9783319008288> ;
    schema:workExample <http://dx.doi.org/10.1007/978-3-319-00828-8> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/859522804> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1427206843#Place/cham_switzerland> # Cham, Switzerland
    a schema:Place ;
    schema:name "Cham, Switzerland" ;
    .

<http://experiment.worldcat.org/entity/work/data/1427206843#Series/lecture_notes_in_mathematics_springer_verlag> # Lecture notes in mathematics (Springer-Verlag) ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/859522804> ; # The dynamics of nonlinear reaction-diffusion equations with small lévy noise
    schema:name "Lecture notes in mathematics (Springer-Verlag) ;" ;
    .

<http://id.worldcat.org/fast/1004416> # Lévy processes
    a schema:Intangible ;
    schema:name "Lévy processes"@en ;
    .

<http://id.worldcat.org/fast/1133516> # Stochastic partial differential equations
    a schema:Intangible ;
    schema:name "Stochastic partial differential equations"@en ;
    .

<http://viaf.org/viaf/305044974> # Arnaud Debussche
    a schema:Person ;
    schema:familyName "Debussche" ;
    schema:givenName "Arnaud" ;
    schema:name "Arnaud Debussche" ;
    .

<http://worldcat.org/entity/work/data/1427206843#CreativeWork/>
    a schema:CreativeWork ;
    schema:description "Printed edition:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/859522804> ; # The dynamics of nonlinear reaction-diffusion equations with small lévy noise
    .

<http://worldcat.org/isbn/9783319008288>
    a schema:ProductModel ;
    schema:isbn "3319008285" ;
    schema:isbn "9783319008288" ;
    .

<http://worldcat.org/issn/1617-9692> # Lecture notes in mathematics,
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/859522804> ; # The dynamics of nonlinear reaction-diffusion equations with small lévy noise
    schema:issn "1617-9692" ;
    schema:name "Lecture notes in mathematics," ;
    .

<http://www.worldcat.org/title/-/oclc/859522804>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
    schema:about <http://www.worldcat.org/oclc/859522804> ; # The dynamics of nonlinear reaction-diffusion equations with small lévy noise
    schema:dateModified "2016-09-14" ;
    void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Zavřít okno

Prosím přihlaste se do WorldCat 

Nemáte účet? Můžete si jednoduše vytvořit bezplatný účet.