přejít na obsah
The dynamics of nonlinear reaction-diffusion equations with small lévy noise Náhled dokumentu
ZavřítNáhled dokumentu
Probíhá kontrola...

The dynamics of nonlinear reaction-diffusion equations with small lévy noise

Autor Arnaud Debussche; SpringerLink (Online service)
Vydavatel: Cham, Switzerland : Springer, ©2013.
Edice: Lecture notes in mathematics (Springer-Verlag), 2085.
Vydání/formát:   e-kniha : Document : EnglishZobrazit všechny vydání a formáty
Databáze:WorldCat
Shrnutí:
This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and  Přečíst více...
Hodnocení:

(ještě nehodnoceno) 0 zobrazit recenze - Buďte první.

Předmětová hesla:
Více podobných

 

Najít online exemplář

Odkazy na tento dokument

Vyhledat exemplář v knihovně

&AllPage.SpinnerRetrieving; Vyhledávání knihoven, které vlastní tento dokument...

Detaily

Typ materiálu: Document, Internetový zdroj
Typ dokumentu: Internet Resource, Computer File
Všichni autoři/tvůrci: Arnaud Debussche; SpringerLink (Online service)
ISBN: 9783319008288 3319008285
OCLC číslo: 859522804
Popis: 1 online resource (xiii, 163 p.) : col. ill.
Obsahy: The Fine Dynamics of the Chafee-Infante Equation --
The Stochastic Chafee-Infante Equation --
The Small Deviation of the Small Noise Solution --
Asymptotic Exit Times --
Asymptotic Transition Times --
Localization and Metastability.
Název edice: Lecture notes in mathematics (Springer-Verlag), 2085.
Odpovědnost: Arnaud Debussche, Michael Högele, Peter Imkeller.
Více informací:

Anotace:

This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states.

Recenze

Recenze vložené uživatelem
Nahrávání recenzí GoodReads...
Přebírání recenzí DOGO books...

Štítky

Buďte první.

Podobné dokumenty

Související předmětová hesla:(2)

Potvrdit tento požadavek

Tento dokument jste si již vyžádali. Prosím vyberte Ok pokud chcete přesto v žádance pokračovat.

Propojená data


<http://www.worldcat.org/oclc/859522804>
library:oclcnum"859522804"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/859522804>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:copyrightYear"2013"
schema:creator
schema:datePublished"2013"
schema:description"This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states."
schema:exampleOfWork<http://worldcat.org/entity/work/id/1427206843>
schema:inLanguage"en"
schema:name"The dynamics of nonlinear reaction-diffusion equations with small lévy noise"
schema:numberOfPages"163"
schema:publisher
schema:url
schema:url<http://dx.doi.org/10.1007/978-3-319-00828-8>
schema:url<http://link.springer.com/book/10.1007/978-3-319-00828-8>
schema:workExample

Content-negotiable representations

Zavřít okno

Prosím přihlaste se do WorldCat 

Nemáte účet? Můžete si jednoduše vytvořit bezplatný účet.