omitir hasta el contenido
The dynamics of nonlinear reaction-diffusion equations with small lévy noise Ver este material de antemano
CerrarVer este material de antemano
Chequeando…

The dynamics of nonlinear reaction-diffusion equations with small lévy noise

Autor: Arnaud Debussche
Editorial: Cham, Switzerland : Springer, ©2013.
Serie: Lecture notes in mathematics (Springer-Verlag), 2085.
Edición/Formato:   Libro-e : Documento : Inglés (eng)Ver todas las ediciones y todos los formatos
Base de datos:WorldCat
Resumen:
This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and  Leer más
Calificación:

(todavía no calificado) 0 con reseñas - Ser el primero.

Temas
Más materiales como éste

 

Encontrar un ejemplar en línea

Enlaces a este material

Encontrar un ejemplar en la biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que tienen este material…

Detalles

Formato físico adicional: Printed edition:
Tipo de material: Documento, Recurso en Internet
Tipo de documento: Recurso en Internet, Archivo de computadora
Todos autores / colaboradores: Arnaud Debussche
ISBN: 9783319008288 3319008285
Número OCLC: 859522804
Descripción: 1 online resource (xiii, 163 pages) : color illustrations.
Contenido: The Fine Dynamics of the Chafee-Infante Equation --
The Stochastic Chafee-Infante Equation --
The Small Deviation of the Small Noise Solution --
Asymptotic Exit Times --
Asymptotic Transition Times --
Localization and Metastability.
Título de la serie: Lecture notes in mathematics (Springer-Verlag), 2085.
Responsabilidad: Arnaud Debussche, Michael Högele, Peter Imkeller.
Más información:

Resumen:

This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states.

Reseñas

Reseñas contribuidas por usuarios
Recuperando reseñas de GoodReads…
Recuperando reseñas de DOGObooks…

Etiquetas

Ser el primero.

Materiales similares

Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Datos enlazados


Primary Entity

<http://www.worldcat.org/oclc/859522804> # The dynamics of nonlinear reaction-diffusion equations with small lévy noise
    a schema:CreativeWork, schema:Book, schema:MediaObject ;
    library:oclcnum "859522804" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/sz> ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/1427206843#Place/cham_switzerland> ; # Cham, Switzerland
    schema:about <http://id.worldcat.org/fast/1004416> ; # Lévy processes
    schema:about <http://id.worldcat.org/fast/1133516> ; # Stochastic partial differential equations
    schema:about <http://dewey.info/class/515.353/e23/> ;
    schema:bookFormat schema:EBook ;
    schema:copyrightYear "2013" ;
    schema:creator <http://viaf.org/viaf/305044974> ; # Arnaud Debussche
    schema:datePublished "2013" ;
    schema:description "This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/1427206843> ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/1427206843#Series/lecture_notes_in_mathematics_springer_verlag> ; # Lecture notes in mathematics (Springer-Verlag) ;
    schema:isPartOf <http://worldcat.org/issn/1617-9692> ; # Lecture notes in mathematics,
    schema:isSimilarTo <http://worldcat.org/entity/work/data/1427206843#CreativeWork/> ;
    schema:name "The dynamics of nonlinear reaction-diffusion equations with small lévy noise"@en ;
    schema:productID "859522804" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/859522804#PublicationEvent/cham_switzerland_springer_2013> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/1427206843#Agent/springer> ; # Springer
    schema:url <http://public.eblib.com/choice/PublicFullRecord.aspx?p=3107036> ;
    schema:url <http://dx.doi.org/10.1007/978-3-319-00828-8> ;
    schema:url <http://link.springer.com/book/10.1007/978-3-319-00828-8> ;
    schema:workExample <http://worldcat.org/isbn/9783319008288> ;
    schema:workExample <http://dx.doi.org/10.1007/978-3-319-00828-8> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/859522804> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1427206843#Place/cham_switzerland> # Cham, Switzerland
    a schema:Place ;
    schema:name "Cham, Switzerland" ;
    .

<http://experiment.worldcat.org/entity/work/data/1427206843#Series/lecture_notes_in_mathematics_springer_verlag> # Lecture notes in mathematics (Springer-Verlag) ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/859522804> ; # The dynamics of nonlinear reaction-diffusion equations with small lévy noise
    schema:name "Lecture notes in mathematics (Springer-Verlag) ;" ;
    .

<http://id.worldcat.org/fast/1004416> # Lévy processes
    a schema:Intangible ;
    schema:name "Lévy processes"@en ;
    .

<http://id.worldcat.org/fast/1133516> # Stochastic partial differential equations
    a schema:Intangible ;
    schema:name "Stochastic partial differential equations"@en ;
    .

<http://viaf.org/viaf/305044974> # Arnaud Debussche
    a schema:Person ;
    schema:familyName "Debussche" ;
    schema:givenName "Arnaud" ;
    schema:name "Arnaud Debussche" ;
    .

<http://worldcat.org/entity/work/data/1427206843#CreativeWork/>
    a schema:CreativeWork ;
    schema:description "Printed edition:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/859522804> ; # The dynamics of nonlinear reaction-diffusion equations with small lévy noise
    .

<http://worldcat.org/isbn/9783319008288>
    a schema:ProductModel ;
    schema:isbn "3319008285" ;
    schema:isbn "9783319008288" ;
    .

<http://worldcat.org/issn/1617-9692> # Lecture notes in mathematics,
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/859522804> ; # The dynamics of nonlinear reaction-diffusion equations with small lévy noise
    schema:issn "1617-9692" ;
    schema:name "Lecture notes in mathematics," ;
    .

<http://www.worldcat.org/title/-/oclc/859522804>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
    schema:about <http://www.worldcat.org/oclc/859522804> ; # The dynamics of nonlinear reaction-diffusion equations with small lévy noise
    schema:dateModified "2016-08-14" ;
    void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.