passa ai contenuti
The dynamics of nonlinear reaction-diffusion equations with small lévy noise Anteprima di questo documento
ChiudiAnteprima di questo documento
Stiamo controllando…

The dynamics of nonlinear reaction-diffusion equations with small lévy noise

Autore: Arnaud Debussche; SpringerLink (Online service)
Editore: Cham, Switzerland : Springer, ©2013.
Serie: Lecture notes in mathematics (Springer-Verlag), 2085.
Edizione/Formato:   eBook : Document : EnglishVedi tutte le edizioni e i formati
Banca dati:WorldCat
Sommario:
This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and  Per saperne di più…
Voto:

(non ancora votato) 0 con commenti - Diventa il primo.

Soggetti
Altri come questo

 

Trova una copia online

Collegamenti a questo documento

Trova una copia in biblioteca

&AllPage.SpinnerRetrieving; Stiamo ricercando le biblioteche che possiedono questo documento…

Dettagli

Tipo materiale: Document, Risorsa internet
Tipo documento: Internet Resource, Computer File
Tutti gli autori / Collaboratori: Arnaud Debussche; SpringerLink (Online service)
ISBN: 9783319008288 3319008285
Numero OCLC: 859522804
Descrizione: 1 online resource (xiii, 163 p.) : col. ill.
Contenuti: The Fine Dynamics of the Chafee-Infante Equation --
The Stochastic Chafee-Infante Equation --
The Small Deviation of the Small Noise Solution --
Asymptotic Exit Times --
Asymptotic Transition Times --
Localization and Metastability.
Titolo della serie: Lecture notes in mathematics (Springer-Verlag), 2085.
Responsabilità: Arnaud Debussche, Michael Högele, Peter Imkeller.
Maggiori informazioni:

Abstract:

This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states.

Commenti

Commenti degli utenti
Recuperando commenti GoodReads…
Stiamo recuperando commenti DOGObooks

Etichette

Diventa il primo.

Documenti simili

Conferma questa richiesta

Potresti aver già richiesto questo documento. Seleziona OK se si vuole procedere comunque con questa richiesta.

Dati collegati


<http://www.worldcat.org/oclc/859522804>
library:oclcnum"859522804"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/859522804>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:copyrightYear"2013"
schema:creator
schema:datePublished"2013"
schema:description"This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states."
schema:exampleOfWork<http://worldcat.org/entity/work/id/1427206843>
schema:inLanguage"en"
schema:name"The dynamics of nonlinear reaction-diffusion equations with small lévy noise"
schema:numberOfPages"163"
schema:publisher
schema:url
schema:url<http://dx.doi.org/10.1007/978-3-319-00828-8>
schema:url<http://link.springer.com/book/10.1007/978-3-319-00828-8>
schema:workExample

Content-negotiable representations

Chiudi finestra

Per favore entra in WorldCat 

Non hai un account? Puoi facilmente crearne uno gratuito.