doorgaan naar inhoud
The dynamics of nonlinear reaction-diffusion equations with small lévy noise Voorbeeldweergave van dit item
SluitenVoorbeeldweergave van dit item
Bezig met controle...

The dynamics of nonlinear reaction-diffusion equations with small lévy noise

Auteur: Arnaud Debussche; SpringerLink (Online service)
Uitgever: Cham, Switzerland : Springer, ©2013.
Serie: Lecture notes in mathematics (Springer-Verlag), 2085.
Editie/Formaat:   eBoek : Document : EngelsAlle edities en materiaalsoorten bekijken.
Database:WorldCat
Samenvatting:
This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and  Meer lezen...
Beoordeling:

(nog niet beoordeeld) 0 met beoordelingen - U bent de eerste

Onderwerpen
Meer in deze trant

 

Zoeken naar een online exemplaar

Links naar dit item

Zoeken naar een in de bibliotheek beschikbaar exemplaar

&AllPage.SpinnerRetrieving; Bibliotheken met dit item worden gezocht…

Details

Genre: Document, Internetbron
Soort document: Internetbron, Computerbestand
Alle auteurs / medewerkers: Arnaud Debussche; SpringerLink (Online service)
ISBN: 9783319008288 3319008285
OCLC-nummer: 859522804
Beschrijving: 1 online resource (xiii, 163 p.) : col. ill.
Inhoud: The Fine Dynamics of the Chafee-Infante Equation --
The Stochastic Chafee-Infante Equation --
The Small Deviation of the Small Noise Solution --
Asymptotic Exit Times --
Asymptotic Transition Times --
Localization and Metastability.
Serietitel: Lecture notes in mathematics (Springer-Verlag), 2085.
Verantwoordelijkheid: Arnaud Debussche, Michael Högele, Peter Imkeller.
Meer informatie:

Fragment:

This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states.

Beoordelingen

Beoordelingen door gebruikers
Beoordelingen van GoodReads worden opgehaald...
Bezig met opvragen DOGObooks-reviews...

Tags

U bent de eerste.

Vergelijkbare items

Bevestig deze aanvraag

Misschien heeft u dit item reeds aangevraagd. Selecteer a.u.b. Ok als u toch wilt doorgaan met deze aanvraag.

Gekoppelde data


<http://www.worldcat.org/oclc/859522804>
library:oclcnum"859522804"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/859522804>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:copyrightYear"2013"
schema:creator
schema:datePublished"2013"
schema:description"This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states."
schema:exampleOfWork<http://worldcat.org/entity/work/id/1427206843>
schema:inLanguage"en"
schema:name"The dynamics of nonlinear reaction-diffusion equations with small lévy noise"
schema:numberOfPages"163"
schema:publisher
schema:url
schema:url<http://dx.doi.org/10.1007/978-3-319-00828-8>
schema:url<http://link.springer.com/book/10.1007/978-3-319-00828-8>
schema:workExample

Content-negotiable representations

Venster sluiten

Meld u aan bij WorldCat 

Heeft u geen account? U kunt eenvoudig een nieuwe gratis account aanmaken.