跳至内容
The dynamics of nonlinear reaction-diffusion equations with small lévy noise 線上預覽
關閉線上預覽
正在查...

The dynamics of nonlinear reaction-diffusion equations with small lévy noise

作者: Arnaud Debussche; SpringerLink (Online service)
出版商: Cham, Switzerland : Springer, ©2013.
叢書: Lecture notes in mathematics (Springer-Verlag), 2085.
版本/格式:   電子書 : 文獻 : 英語所有版本和格式的總覽
資料庫:WorldCat
提要:
This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and  再讀一些...
評定級別:

(尚未評分) 0 附有評論 - 成爲第一個。

主題
更多類似這樣的

 

在線上查詢

與資料的連結

在圖書館查詢

&AllPage.SpinnerRetrieving; 正在查詢有此資料的圖書館...

詳細書目

資料類型: 文獻, 網際網路資源
文件類型: 網路資源, 電腦資料
所有的作者/貢獻者: Arnaud Debussche; SpringerLink (Online service)
ISBN: 9783319008288 3319008285
OCLC系統控制編碼: 859522804
描述: 1 online resource (xiii, 163 p.) : col. ill.
内容: The Fine Dynamics of the Chafee-Infante Equation --
The Stochastic Chafee-Infante Equation --
The Small Deviation of the Small Noise Solution --
Asymptotic Exit Times --
Asymptotic Transition Times --
Localization and Metastability.
叢書名: Lecture notes in mathematics (Springer-Verlag), 2085.
責任: Arnaud Debussche, Michael Högele, Peter Imkeller.
更多資訊:

摘要:

This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states.

評論

讀者提供的評論
正在擷取GoodReads評論...
正在擷取DOGObooks的評論

標籤

成爲第一個
確認申請

你可能已經申請過這份資料。若還是想申請,請選確認。

連結資料


<http://www.worldcat.org/oclc/859522804>
library:oclcnum"859522804"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/859522804>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:copyrightYear"2013"
schema:creator
schema:datePublished"2013"
schema:description"This work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states."
schema:exampleOfWork<http://worldcat.org/entity/work/id/1427206843>
schema:inLanguage"en"
schema:name"The dynamics of nonlinear reaction-diffusion equations with small lévy noise"
schema:numberOfPages"163"
schema:publisher
schema:url
schema:url<http://dx.doi.org/10.1007/978-3-319-00828-8>
schema:url<http://link.springer.com/book/10.1007/978-3-319-00828-8>
schema:workExample

Content-negotiable representations

關閉視窗

請登入WorldCat 

没有帳號嗎?你可很容易的 建立免費的帳號.