skip to content
Efficiency of the network simplex algorithm for the maximum flow problem Preview this item
ClosePreview this item
Checking...

Efficiency of the network simplex algorithm for the maximum flow problem

Author: Andrew V Goldberg; Michael D Grigoriadis; Robert E Tarjan; Stanford University. Computer Science Department.
Publisher: Stanford, Calif. : Dept. of Computer Science, Stanford University, 1989.
Series: Report (Stanford University. Computer Science Department), no. STAN-CS-89-1248.
Edition/Format:   Print book : EnglishView all editions and formats
Database:WorldCat
Summary:
Goldfarb and Hao have proposed a network simplex algorithm that will solve a maximum flow problem on an n-vertex, m-arc network in at most nm pivots and O(n2m) time. In this paper we describe how to implement their algorithm to run in O(nm log n) time by using an extension of the dynamic tree data structure of Sleator and Tarjan. This bound is less than a logarithmic factor larger than that of any other known  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: Andrew V Goldberg; Michael D Grigoriadis; Robert E Tarjan; Stanford University. Computer Science Department.
OCLC Number: 20257481
Notes: "February 1989."
Description: 17 pages : illustrations ; 28 cm.
Series Title: Report (Stanford University. Computer Science Department), no. STAN-CS-89-1248.
Responsibility: Andrew V. Goldberg, Michael D. Grigoriadis, Robert E. Tarjan.

Abstract:

Goldfarb and Hao have proposed a network simplex algorithm that will solve a maximum flow problem on an n-vertex, m-arc network in at most nm pivots and O(n2m) time. In this paper we describe how to implement their algorithm to run in O(nm log n) time by using an extension of the dynamic tree data structure of Sleator and Tarjan. This bound is less than a logarithmic factor larger than that of any other known algorithm for the problem.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/20257481> # Efficiency of the network simplex algorithm for the maximum flow problem
    a schema:CreativeWork, schema:Book ;
   library:oclcnum "20257481" ;
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/cau> ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/21482701#Place/stanford_calif> ; # Stanford, Calif.
   schema:about <http://id.worldcat.org/fast/887978> ; # Data structures (Computer science)
   schema:about <http://id.worldcat.org/fast/872297> ; # Computer networks
   schema:about <http://id.worldcat.org/fast/805020> ; # Algorithms
   schema:about <http://id.worldcat.org/fast/999090> ; # Linear programming
   schema:about <http://id.worldcat.org/fast/871991> ; # Computational complexity
   schema:bookFormat bgn:PrintBook ;
   schema:contributor <http://experiment.worldcat.org/entity/work/data/21482701#Person/grigoriadis_michael_d> ; # Michael D. Grigoriadis
   schema:contributor <http://viaf.org/viaf/152491517> ; # Stanford University. Computer Science Department.
   schema:contributor <http://viaf.org/viaf/73933029> ; # Robert Endre Tarjan
   schema:creator <http://experiment.worldcat.org/entity/work/data/21482701#Person/goldberg_andrew_v> ; # Andrew V. Goldberg
   schema:datePublished "1989" ;
   schema:description "Goldfarb and Hao have proposed a network simplex algorithm that will solve a maximum flow problem on an n-vertex, m-arc network in at most nm pivots and O(n2m) time. In this paper we describe how to implement their algorithm to run in O(nm log n) time by using an extension of the dynamic tree data structure of Sleator and Tarjan. This bound is less than a logarithmic factor larger than that of any other known algorithm for the problem."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/21482701> ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/21482701#Series/report_stanford_university_computer_science_dept> ; # Report / Stanford University. Computer Science Dept. ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/21482701#Series/report_stanford_university_computer_science_department> ; # Report (Stanford University. Computer Science Department) ;
   schema:name "Efficiency of the network simplex algorithm for the maximum flow problem"@en ;
   schema:productID "20257481" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/20257481#PublicationEvent/stanford_calif_dept_of_computer_science_stanford_university_1989> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/21482701#Agent/dept_of_computer_science_stanford_university> ; # Dept. of Computer Science, Stanford University
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/20257481> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/21482701#Agent/dept_of_computer_science_stanford_university> # Dept. of Computer Science, Stanford University
    a bgn:Agent ;
   schema:name "Dept. of Computer Science, Stanford University" ;
    .

<http://experiment.worldcat.org/entity/work/data/21482701#Person/goldberg_andrew_v> # Andrew V. Goldberg
    a schema:Person ;
   schema:familyName "Goldberg" ;
   schema:givenName "Andrew V." ;
   schema:name "Andrew V. Goldberg" ;
    .

<http://experiment.worldcat.org/entity/work/data/21482701#Person/grigoriadis_michael_d> # Michael D. Grigoriadis
    a schema:Person ;
   schema:familyName "Grigoriadis" ;
   schema:givenName "Michael D." ;
   schema:name "Michael D. Grigoriadis" ;
    .

<http://experiment.worldcat.org/entity/work/data/21482701#Place/stanford_calif> # Stanford, Calif.
    a schema:Place ;
   schema:name "Stanford, Calif." ;
    .

<http://experiment.worldcat.org/entity/work/data/21482701#Series/report_stanford_university_computer_science_department> # Report (Stanford University. Computer Science Department) ;
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/20257481> ; # Efficiency of the network simplex algorithm for the maximum flow problem
   schema:name "Report (Stanford University. Computer Science Department) ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/21482701#Series/report_stanford_university_computer_science_dept> # Report / Stanford University. Computer Science Dept. ;
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/20257481> ; # Efficiency of the network simplex algorithm for the maximum flow problem
   schema:name "Report / Stanford University. Computer Science Dept. ;" ;
    .

<http://id.worldcat.org/fast/805020> # Algorithms
    a schema:Intangible ;
   schema:name "Algorithms"@en ;
    .

<http://id.worldcat.org/fast/871991> # Computational complexity
    a schema:Intangible ;
   schema:name "Computational complexity"@en ;
    .

<http://id.worldcat.org/fast/872297> # Computer networks
    a schema:Intangible ;
   schema:name "Computer networks"@en ;
    .

<http://id.worldcat.org/fast/887978> # Data structures (Computer science)
    a schema:Intangible ;
   schema:name "Data structures (Computer science)"@en ;
    .

<http://id.worldcat.org/fast/999090> # Linear programming
    a schema:Intangible ;
   schema:name "Linear programming"@en ;
    .

<http://viaf.org/viaf/152491517> # Stanford University. Computer Science Department.
    a schema:Organization ;
   schema:name "Stanford University. Computer Science Department." ;
    .

<http://viaf.org/viaf/73933029> # Robert Endre Tarjan
    a schema:Person ;
   schema:birthDate "1948" ;
   schema:familyName "Tarjan" ;
   schema:givenName "Robert Endre" ;
   schema:givenName "Robert E." ;
   schema:name "Robert Endre Tarjan" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.