pular para conteúdo
The eightfold way : the beauty of Klein's quartic curve Ver prévia deste item
FecharVer prévia deste item
Checando...

The eightfold way : the beauty of Klein's quartic curve

Autor: Silvio Levy
Editora: Cambridge [England] ; New York : Cambridge University Press, 1999.
Séries: Mathematical Sciences Research Institute publications, 35.
Edição/Formato   Livro : InglêsVer todas as edições e formatos
Base de Dados:WorldCat
Resumo:
"Felix Klein discovered in the 1870s that the simple equation x[superscript 3]y + y[superscript 3]z + z[superscript 3]x = 0 (in complex projective coordinates) describes a surface having many remarkable properties, including 336-fold symmetry - the maximum possible for any surface of this genus. Since then this object has come up in different guises in several areas of mathematics." "The mathematical sculptor  Ler mais...
Classificação:

(ainda não classificado) 0 com críticas - Seja o primeiro.

Assuntos
Mais como este

 

Encontrar uma cópia na biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que possuem este item...

Detalhes

Pessoa Denominada: Felix Klein; Felix Klein
Tipo de Material: Recurso Internet
Tipo de Documento: Livro, Recurso Internet
Todos os Autores / Contribuintes: Silvio Levy
ISBN: 0521660661 9780521660662 0521004195 9780521004190
Número OCLC: 40396998
Descrição: x, 331 pages : illustrations ; 25 cm.
Conteúdos: The Eightfold Way : a mathematical sculpture by Helaman Ferguson / William P. Thurston --
The geometry of Klein's Riemann surface / Hermann Karcher and Matthias Weber --
The Klein quartic in number theory / Noam D. Elkies --
Hurwitz groups and surfaces / A. Murray Macbeath --
From the history of a simple group / Jeremy Gray --
Eightfold Way : the sculpture / Helaman Ferguson with Claire Ferguson --
Invariants of SL₂(F[subscript]q)·Aut(F[subscript]q) acting on C[superscript]n for q=2n±1 ; Hirzebruch's curves F₁, F₂, F₄, F₁₄, F₂ for Q([symbol for square root]7) / Allan Adler --
On the order-seven transformation of elliptic functions / Felix Klein ; translated by Silvio Levy.
Título da Série: Mathematical Sciences Research Institute publications, 35.
Responsabilidade: edited by Silvio Levy.
Mais informações:

Resumo:

Expository and research articles by renowned mathematicians on the myriad properties of the Klein quartic.  Ler mais...

Críticas

Críticas contribuídas por usuários
Recuperando críticas GoodReas...
Recuperando comentários DOGObooks

Etiquetas

Seja o primeiro.
Confirmar esta solicitação

Você já pode ter solicitado este item. Por favor, selecione Ok se gostaria de proceder com esta solicitação de qualquer forma.

Dados Ligados


<http://www.worldcat.org/oclc/40396998>
library:oclcnum"40396998"
library:placeOfPublication
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:MediaObject
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:contributor
schema:datePublished"1999"
schema:description"The Eightfold Way : a mathematical sculpture by Helaman Ferguson / William P. Thurston -- The geometry of Klein's Riemann surface / Hermann Karcher and Matthias Weber -- The Klein quartic in number theory / Noam D. Elkies -- Hurwitz groups and surfaces / A. Murray Macbeath -- From the history of a simple group / Jeremy Gray -- Eightfold Way : the sculpture / Helaman Ferguson with Claire Ferguson -- Invariants of SL₂(F[subscript]q)·Aut(F[subscript]q) acting on C[superscript]n for q=2n±1 ; Hirzebruch's curves F₁, F₂, F₄, F₁₄, F₂ for Q([symbol for square root]7) / Allan Adler -- On the order-seven transformation of elliptic functions / Felix Klein ; translated by Silvio Levy."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/795184895>
schema:inLanguage"en"
schema:isPartOf
schema:name"The eightfold way : the beauty of Klein's quartic curve"@en
schema:publication
schema:publisher
schema:reviews
rdf:typeschema:Review
schema:itemReviewed<http://www.worldcat.org/oclc/40396998>
schema:reviewBody""Felix Klein discovered in the 1870s that the simple equation x[superscript 3]y + y[superscript 3]z + z[superscript 3]x = 0 (in complex projective coordinates) describes a surface having many remarkable properties, including 336-fold symmetry - the maximum possible for any surface of this genus. Since then this object has come up in different guises in several areas of mathematics." "The mathematical sculptor Helaman Ferguson has tried to distill some of the beauty and remarkable properties of this surface in the form of a sculpture that he entitled The Eightfold Way, permanently installed at the Mathematical Sciences Research Institute in Berkeley." "This volume seeks to explore the rich tangle of properties and theories surrounding this object, as well as its esthetic aspects."--Jacket."
schema:workExample
schema:workExample
umbel:isLike<http://bnb.data.bl.uk/id/resource/GB9970262>
wdrs:describedby

Content-negotiable representations

Close Window

Por favor, conecte-se ao WorldCat 

Não tem uma conta? Você pode facilmente criar uma conta gratuita.