omitir hasta el contenido
Emmy Noether's wonderful theorem Ver este material de antemano
CerrarVer este material de antemano
Chequeando…

Emmy Noether's wonderful theorem

Autor: Dwight E Neuenschwander
Editorial: Baltimore, Md. : Johns Hopkins University Press, ©2011.
Edición/Formato:   Print book : Inglés (eng)Ver todas las ediciones y todos los formatos
Base de datos:WorldCat
Resumen:
"A beautiful piece of mathematics, Noether's Theorem touches on every aspect of physics. Emmy Noether proved her theorem in 1915 and published it in 1918. This profound concept demonstrates the connection between conservation laws and symmetries. For instance, the theorem shows that a system invariant under translations of time, space, or rotation will obey the laws of conservation of energy, linear momentum, or
Calificación:

(todavía no calificado) 0 con reseñas - Ser el primero.

Temas
Más materiales como éste

 

Encontrar un ejemplar en la biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que tienen este material…

Detalles

Persona designada: Emmy Noether; Emmy Noether
Tipo de documento: Libro/Texto
Todos autores / colaboradores: Dwight E Neuenschwander
ISBN: 0801896940 9780801896941 9780801896934 0801896932
Número OCLC: 654748881
Descripción: xviii, 243 pages : illustrations ; 22 cm
Contenido: Preface --
Acknowledgments --
Glossary of symbols --
Primary and auxiliary questions --
1 PROLOGUE --
1.1 Symmetry, invariance, and conservation laws --
1.2 Emmy Noether biographical notes --
WHEN FUNCTIONALS ARE EXTREMAL --
2 Functionals --
2.1 Single-integral functionals --
2.2 Formal definition of a functional --
3 Extremals --
3.1 The Euler-Lagrange Equation --
3.2 Corollaries to the Euler-Lagrange Equation --
3.3 On the equivalence of Hamilton's Principle and Newton's Second Law --
3.4 Where did Hamilton's Principle come from? --
3.5 Why kinetic minus potential energy? --
3.6 Extremals with external constraints --
WHEN FUNCTIONALS ARE INVARIANT --
4 Invariance --
4.1 Formal definition of Invariance --
4.2 Condition for Invariance: The Rund-Trautman Identity --
4.3 A more liberal definition of Invariance --
5 Emmy Noether's Elegant Theorem --
5.1 Extremal + Invariance = Noether's Theorem --
5.2 The inverse problem: Finding invariances --
5.3 Adiabatic Invariance and Noether's Theorem --
THE INVARIANCE OF FIELDS --
6 Fields and Noether's theorem --
6.1 Multiple-integral functionals --
6.2 Euler-Lagrange Equations for Fields --
6.3 Canonical momenta and the Hamiltonian for Fields --
6.4 Equations of Continuity --
6.5 The Rund-Trautman Identity for Fields --
6.6 Noether's Theorem for Fields --
6.7 Complex fields --
6.8 Global Gauge transformations --
7 Gauge Invariance as a dynamical principle --
7.1 Local Gauge Invariance and the covariant derivative --
7.2 Electrodynamics as a Gauge Theory I: Field tensors --
7.3 Pure electrodynamics, spacetime invariances, and conservation laws --
7.4 Electrodynamics as a Gauge Theory II: Sources and minimal coupling --
7.5 Internal degrees of freedom --
7.6 Non-Abelian Gauge transformations --
POST-NOETHER INVARIANCE --
8 Invariance in phase space --
8.1 Phase Space --
8.2 Hamilton's Principle in Phase Space --
8.3 Noether's Theorem through Hamilton's Equations --
8.4 Hamilton-Jacobi Theory --
9 The action as a generator --
9.1 Conservation of probability and unitary transformations --
9.2 Continuous spacetime transformations in quantum mechanics --
9.3 Epilogue --
APPENDIXES --
A. Scalars, vectors, tensors, and coordinate transformations --
B. Special relativity --
C. Equations of motion in quantum mechanics --
D. Legendre transformations and conjugate variables --
E. The Jacobian --
Bibliography --
Index.
Responsabilidad: Dwight E. Neuenschwander.
Más información:

Resumen:

This handy guide includes end-of-chapter questions for review and appendixes detailing key related physics concepts for further study.  Leer más

Reseñas

Reseñas editoriales

Resumen de la editorial

Neuenschwander writes well and gives thorough explanations. Choice 2011

 
Reseñas contribuidas por usuarios
Recuperando reseñas de GoodReads…
Recuperando reseñas de DOGObooks…

Etiquetas

Ser el primero.

Materiales similares

Temas relacionados:(5)

Listas de usuarios con este material (1)

Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Datos enlazados


Primary Entity

<http://www.worldcat.org/oclc/654748881> # Emmy Noether's wonderful theorem
    a schema:CreativeWork, schema:Book ;
    library:oclcnum "654748881" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/mdu> ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/568994197#Place/baltimore_md> ; # Baltimore, Md.
    schema:about <http://id.worldcat.org/fast/1744696> ; # Noether's theorem
    schema:about <http://dewey.info/class/539.725/e22/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/568994197#Topic/invariantentheorie> ; # Invariantentheorie
    schema:about <http://experiment.worldcat.org/entity/work/data/568994197#Topic/noether_theorem> ; # Noether-Theorem
    schema:about <http://experiment.worldcat.org/entity/work/data/568994197#Person/noether_emmy_1882_1935> ; # Emmy Noether
    schema:about <http://viaf.org/viaf/73918294> ; # Emmy Noether
    schema:author <http://experiment.worldcat.org/entity/work/data/568994197#Person/neuenschwander_dwight_e> ; # Dwight E. Neuenschwander
    schema:bookFormat bgn:PrintBook ;
    schema:copyrightYear "2011" ;
    schema:datePublished "2011" ;
    schema:description ""A beautiful piece of mathematics, Noether's Theorem touches on every aspect of physics. Emmy Noether proved her theorem in 1915 and published it in 1918. This profound concept demonstrates the connection between conservation laws and symmetries. For instance, the theorem shows that a system invariant under translations of time, space, or rotation will obey the laws of conservation of energy, linear momentum, or angular momentum, respectively. This exciting result offers a rich unifying principle for all of physics."@en ;
    schema:description "Preface -- Acknowledgments -- Glossary of symbols -- Primary and auxiliary questions -- 1 PROLOGUE -- 1.1 Symmetry, invariance, and conservation laws -- 1.2 Emmy Noether biographical notes -- WHEN FUNCTIONALS ARE EXTREMAL -- 2 Functionals -- 2.1 Single-integral functionals -- 2.2 Formal definition of a functional -- 3 Extremals -- 3.1 The Euler-Lagrange Equation -- 3.2 Corollaries to the Euler-Lagrange Equation -- 3.3 On the equivalence of Hamilton's Principle and Newton's Second Law -- 3.4 Where did Hamilton's Principle come from? -- 3.5 Why kinetic minus potential energy? -- 3.6 Extremals with external constraints -- WHEN FUNCTIONALS ARE INVARIANT -- 4 Invariance -- 4.1 Formal definition of Invariance -- 4.2 Condition for Invariance: The Rund-Trautman Identity -- 4.3 A more liberal definition of Invariance -- 5 Emmy Noether's Elegant Theorem -- 5.1 Extremal + Invariance = Noether's Theorem -- 5.2 The inverse problem: Finding invariances -- 5.3 Adiabatic Invariance and Noether's Theorem -- THE INVARIANCE OF FIELDS -- 6 Fields and Noether's theorem -- 6.1 Multiple-integral functionals -- 6.2 Euler-Lagrange Equations for Fields -- 6.3 Canonical momenta and the Hamiltonian for Fields -- 6.4 Equations of Continuity -- 6.5 The Rund-Trautman Identity for Fields -- 6.6 Noether's Theorem for Fields -- 6.7 Complex fields -- 6.8 Global Gauge transformations -- 7 Gauge Invariance as a dynamical principle -- 7.1 Local Gauge Invariance and the covariant derivative -- 7.2 Electrodynamics as a Gauge Theory I: Field tensors -- 7.3 Pure electrodynamics, spacetime invariances, and conservation laws -- 7.4 Electrodynamics as a Gauge Theory II: Sources and minimal coupling -- 7.5 Internal degrees of freedom -- 7.6 Non-Abelian Gauge transformations -- POST-NOETHER INVARIANCE -- 8 Invariance in phase space -- 8.1 Phase Space -- 8.2 Hamilton's Principle in Phase Space -- 8.3 Noether's Theorem through Hamilton's Equations -- 8.4 Hamilton-Jacobi Theory -- 9 The action as a generator -- 9.1 Conservation of probability and unitary transformations -- 9.2 Continuous spacetime transformations in quantum mechanics -- 9.3 Epilogue -- APPENDIXES -- A. Scalars, vectors, tensors, and coordinate transformations -- B. Special relativity -- C. Equations of motion in quantum mechanics -- D. Legendre transformations and conjugate variables -- E. The Jacobian -- Bibliography -- Index."@en ;
    schema:description ""Dwight E. Neuenschwander's introduction to the theorem's genesis, applications, and consequences artfully unpacks its universal importance and unsurpassed elegance. Drawing from over thirty years of teaching the subject, Neuenschwander uses mechanics, optics, geometry, and field theory to point the way to a deep understanding of Noether's Theorem. The three sections provide a step-by-step, simple approach to the less-complex concepts surrounding the theorem, in turn instilling the knowledge and confidence needed to grasp the full wonder it encompasses. Illustrations and worked examples throughout each chapter serve as signposts on the way to this apex of physics."--Publisher's description."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/568994197> ;
    schema:inLanguage "en" ;
    schema:name "Emmy Noether's wonderful theorem"@en ;
    schema:productID "654748881" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/654748881#PublicationEvent/baltimore_md_johns_hopkins_university_press_2011> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/568994197#Agent/johns_hopkins_university_press> ; # Johns Hopkins University Press
    schema:workExample <http://worldcat.org/isbn/9780801896934> ;
    schema:workExample <http://worldcat.org/isbn/9780801896941> ;
    umbel:isLike <http://bnb.data.bl.uk/id/resource/GBB0A4537> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/654748881> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/568994197#Agent/johns_hopkins_university_press> # Johns Hopkins University Press
    a bgn:Agent ;
    schema:name "Johns Hopkins University Press" ;
    .

<http://experiment.worldcat.org/entity/work/data/568994197#Person/neuenschwander_dwight_e> # Dwight E. Neuenschwander
    a schema:Person ;
    schema:familyName "Neuenschwander" ;
    schema:givenName "Dwight E." ;
    schema:name "Dwight E. Neuenschwander" ;
    .

<http://experiment.worldcat.org/entity/work/data/568994197#Person/noether_emmy_1882_1935> # Emmy Noether
    a schema:Person ;
    schema:birthDate "1882" ;
    schema:deathDate "1935" ;
    schema:familyName "Noether" ;
    schema:givenName "Emmy" ;
    schema:name "Emmy Noether" ;
    .

<http://experiment.worldcat.org/entity/work/data/568994197#Place/baltimore_md> # Baltimore, Md.
    a schema:Place ;
    schema:name "Baltimore, Md." ;
    .

<http://experiment.worldcat.org/entity/work/data/568994197#Topic/invariantentheorie> # Invariantentheorie
    a schema:Intangible ;
    schema:name "Invariantentheorie"@en ;
    .

<http://id.worldcat.org/fast/1744696> # Noether's theorem
    a schema:Intangible ;
    schema:name "Noether's theorem"@en ;
    .

<http://viaf.org/viaf/73918294> # Emmy Noether
    a schema:Person ;
    schema:birthDate "1882" ;
    schema:deathDate "1935" ;
    schema:familyName "Noether" ;
    schema:givenName "Emmy" ;
    schema:name "Emmy Noether" ;
    .

<http://worldcat.org/isbn/9780801896934>
    a schema:ProductModel ;
    schema:isbn "0801896932" ;
    schema:isbn "9780801896934" ;
    .

<http://worldcat.org/isbn/9780801896941>
    a schema:ProductModel ;
    schema:isbn "0801896940" ;
    schema:isbn "9780801896941" ;
    .


Content-negotiable representations

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.