aller au contenu
Emmy Noether's wonderful theorem Aperçu de cet ouvrage
FermerAperçu de cet ouvrage
Vérification...

Emmy Noether's wonderful theorem

Auteur : Dwight E Neuenschwander
Éditeur : Baltimore, Md. : Johns Hopkins University Press, ©2011.
Édition/format :   Livre imprimé : EnglishVoir toutes les éditions et tous les formats
Base de données :WorldCat
Résumé :
"A beautiful piece of mathematics, Noether's Theorem touches on every aspect of physics. Emmy Noether proved her theorem in 1915 and published it in 1918. This profound concept demonstrates the connection between conservation laws and symmetries. For instance, the theorem shows that a system invariant under translations of time, space, or rotation will obey the laws of conservation of energy, linear momentum, or
Évaluation :

(pas encore évalué) 0 avec des critiques - Soyez le premier.

Sujets
Plus comme ceci

 

Trouver un exemplaire dans la bibliothèque

&AllPage.SpinnerRetrieving; Recherche de bibliothèques qui possèdent cet ouvrage...

Détails

Personne nommée : Emmy Noether; Emmy Noether
Format : Book
Tous les auteurs / collaborateurs : Dwight E Neuenschwander
ISBN : 0801896940 9780801896941 9780801896934 0801896932
Numéro OCLC : 654748881
Description : xviii, 243 pages : illustrations ; 22 cm
Contenu : Preface --
Acknowledgments --
Glossary of symbols --
Primary and auxiliary questions --
1 PROLOGUE --
1.1 Symmetry, invariance, and conservation laws --
1.2 Emmy Noether biographical notes --
WHEN FUNCTIONALS ARE EXTREMAL --
2 Functionals --
2.1 Single-integral functionals --
2.2 Formal definition of a functional --
3 Extremals --
3.1 The Euler-Lagrange Equation --
3.2 Corollaries to the Euler-Lagrange Equation --
3.3 On the equivalence of Hamilton's Principle and Newton's Second Law --
3.4 Where did Hamilton's Principle come from? --
3.5 Why kinetic minus potential energy? --
3.6 Extremals with external constraints --
When functionals are invariant --
4 Invariance --
4.1 Formal definition of Invariance --
4.2 Condition for Invariance: The Rund-Trautman Identity --
4.3 A more liberal definition of Invariance --
5 Emmy Noether's Elegant Theorem --
5.1 Extremal + Invariance = Noether's Theorem --
5.2 The inverse problem: Finding invariances --
5.3 Adiabatic Invariance and Noether's Theorem --
THE INVARIANCE OF FIELDS --
6 Fields and Noether's theorem --
6.1 Multiple-integral functionals --
6.2 Euler-Lagrange Equations for Fields --
6.3 Canonical momenta and the Hamiltonian for Fields --
6.4 Equations of Continuity --
6.5 The Rund-Trautman Identity for Fields --
6.6 Noether's Theorem for Fields --
6.7 Complex fields --
6.8 Global Gauge transformations --
7 Gauge Invariance as a dynamical principle --
7.1 Local Gauge Invariance and the covariant derivative --
7.2 Electrodynamics as a Gauge Theory I: Field tensors --
7.3 Pure electrodynamics, spacetime invariances, and conservation laws --
7.4 Electrodynamics as a Gauge Theory II: Sources and minimal coupling --
7.5 Internal degrees of freedom --
7.6 Non-Abelian Gauge transformations --
POST-NOETHER INVARIANCE --
8 Invariance in phase space --
8.1 Phase Space --
8.2 Hamilton's Principle in Phase Space --
8.3 Noether's Theorem through Hamilton's Equations --
8.4 Hamilton-Jacobi Theory --
9 The action as a generator --
9.1 Conservation of probability and unitary transformations --
9.2 Continuous spacetime transformations in quantum mechanics --
9.3 Epilogue --
APPENDIXES --
A. Scalars, vectors, tensors, and coordinate transformations --
B. Special relativity --
C. Equations of motion in quantum mechanics --
D. Legendre transformations and conjugate variables --
E. The Jacobian --
Bibliography --
Index.
Responsabilité : Dwight E. Neuenschwander.
Plus d’informations :

Résumé :

This handy guide includes end-of-chapter questions for review and appendixes detailing key related physics concepts for further study.  Lire la suite...

Critiques

Critiques éditoriales

Synopsis de l’éditeur

Neuenschwander writes well and gives thorough explanations. Choice 2011

 
Critiques d’utilisateurs
Récupération des critiques de GoodReads...
Récuperation des critiques DOGObooks…

Étiquettes

Soyez le premier.

Ouvrages semblables

Sujets associés :(5)

Listes d’utilisateurs dans lesquelles cet ouvrage apparaît (1)

Confirmez cette demande

Vous avez peut-être déjà demandé cet ouvrage. Veuillez sélectionner OK si vous voulez poursuivre avec cette demande quand même.

Données liées


Primary Entity

<http://www.worldcat.org/oclc/654748881> # Emmy Noether's wonderful theorem
    a schema:CreativeWork, schema:Book ;
   library:oclcnum "654748881" ;
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/mdu> ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/568994197#Place/baltimore_md> ; # Baltimore, Md.
   schema:about <http://id.worldcat.org/fast/1744696> ; # Noether's theorem
   schema:about <http://dewey.info/class/539.725/e22/> ;
   schema:about <http://experiment.worldcat.org/entity/work/data/568994197#Topic/invariantentheorie> ; # Invariantentheorie
   schema:about <http://experiment.worldcat.org/entity/work/data/568994197#Topic/noether_theorem> ; # Noether-Theorem
   schema:about <http://experiment.worldcat.org/entity/work/data/568994197#Person/noether_emmy_1882_1935> ; # Emmy Noether
   schema:about <http://viaf.org/viaf/73918294> ; # Emmy Noether
   schema:author <http://viaf.org/viaf/39275008> ; # Dwight E. Neuenschwander
   schema:bookFormat bgn:PrintBook ;
   schema:copyrightYear "2011" ;
   schema:datePublished "2011" ;
   schema:description ""A beautiful piece of mathematics, Noether's Theorem touches on every aspect of physics. Emmy Noether proved her theorem in 1915 and published it in 1918. This profound concept demonstrates the connection between conservation laws and symmetries. For instance, the theorem shows that a system invariant under translations of time, space, or rotation will obey the laws of conservation of energy, linear momentum, or angular momentum, respectively. This exciting result offers a rich unifying principle for all of physics."@en ;
   schema:description ""Dwight E. Neuenschwander's introduction to the theorem's genesis, applications, and consequences artfully unpacks its universal importance and unsurpassed elegance. Drawing from over thirty years of teaching the subject, Neuenschwander uses mechanics, optics, geometry, and field theory to point the way to a deep understanding of Noether's Theorem. The three sections provide a step-by-step, simple approach to the less-complex concepts surrounding the theorem, in turn instilling the knowledge and confidence needed to grasp the full wonder it encompasses. Illustrations and worked examples throughout each chapter serve as signposts on the way to this apex of physics."--Publisher's description."@en ;
   schema:description "Preface -- Acknowledgments -- Glossary of symbols -- Primary and auxiliary questions -- 1 PROLOGUE -- 1.1 Symmetry, invariance, and conservation laws -- 1.2 Emmy Noether biographical notes -- WHEN FUNCTIONALS ARE EXTREMAL -- 2 Functionals -- 2.1 Single-integral functionals -- 2.2 Formal definition of a functional -- 3 Extremals -- 3.1 The Euler-Lagrange Equation -- 3.2 Corollaries to the Euler-Lagrange Equation -- 3.3 On the equivalence of Hamilton's Principle and Newton's Second Law -- 3.4 Where did Hamilton's Principle come from? -- 3.5 Why kinetic minus potential energy? -- 3.6 Extremals with external constraints -- When functionals are invariant -- 4 Invariance -- 4.1 Formal definition of Invariance -- 4.2 Condition for Invariance: The Rund-Trautman Identity -- 4.3 A more liberal definition of Invariance -- 5 Emmy Noether's Elegant Theorem -- 5.1 Extremal + Invariance = Noether's Theorem -- 5.2 The inverse problem: Finding invariances -- 5.3 Adiabatic Invariance and Noether's Theorem -- THE INVARIANCE OF FIELDS -- 6 Fields and Noether's theorem -- 6.1 Multiple-integral functionals -- 6.2 Euler-Lagrange Equations for Fields -- 6.3 Canonical momenta and the Hamiltonian for Fields -- 6.4 Equations of Continuity -- 6.5 The Rund-Trautman Identity for Fields -- 6.6 Noether's Theorem for Fields -- 6.7 Complex fields -- 6.8 Global Gauge transformations -- 7 Gauge Invariance as a dynamical principle -- 7.1 Local Gauge Invariance and the covariant derivative -- 7.2 Electrodynamics as a Gauge Theory I: Field tensors -- 7.3 Pure electrodynamics, spacetime invariances, and conservation laws -- 7.4 Electrodynamics as a Gauge Theory II: Sources and minimal coupling -- 7.5 Internal degrees of freedom -- 7.6 Non-Abelian Gauge transformations -- POST-NOETHER INVARIANCE -- 8 Invariance in phase space -- 8.1 Phase Space -- 8.2 Hamilton's Principle in Phase Space -- 8.3 Noether's Theorem through Hamilton's Equations -- 8.4 Hamilton-Jacobi Theory -- 9 The action as a generator -- 9.1 Conservation of probability and unitary transformations -- 9.2 Continuous spacetime transformations in quantum mechanics -- 9.3 Epilogue -- APPENDIXES -- A. Scalars, vectors, tensors, and coordinate transformations -- B. Special relativity -- C. Equations of motion in quantum mechanics -- D. Legendre transformations and conjugate variables -- E. The Jacobian -- Bibliography -- Index."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/568994197> ;
   schema:inLanguage "en" ;
   schema:name "Emmy Noether's wonderful theorem"@en ;
   schema:productID "654748881" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/654748881#PublicationEvent/baltimore_md_johns_hopkins_university_press_2011> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/568994197#Agent/johns_hopkins_university_press> ; # Johns Hopkins University Press
   schema:workExample <http://worldcat.org/isbn/9780801896934> ;
   schema:workExample <http://worldcat.org/isbn/9780801896941> ;
   umbel:isLike <http://bnb.data.bl.uk/id/resource/GBB0A4537> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/654748881> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/568994197#Agent/johns_hopkins_university_press> # Johns Hopkins University Press
    a bgn:Agent ;
   schema:name "Johns Hopkins University Press" ;
    .

<http://experiment.worldcat.org/entity/work/data/568994197#Person/noether_emmy_1882_1935> # Emmy Noether
    a schema:Person ;
   schema:birthDate "1882" ;
   schema:deathDate "1935" ;
   schema:familyName "Noether" ;
   schema:givenName "Emmy" ;
   schema:name "Emmy Noether" ;
    .

<http://id.worldcat.org/fast/1744696> # Noether's theorem
    a schema:Intangible ;
   schema:name "Noether's theorem"@en ;
    .

<http://viaf.org/viaf/39275008> # Dwight E. Neuenschwander
    a schema:Person ;
   schema:familyName "Neuenschwander" ;
   schema:givenName "Dwight E." ;
   schema:name "Dwight E. Neuenschwander" ;
    .

<http://viaf.org/viaf/73918294> # Emmy Noether
    a schema:Person ;
   schema:birthDate "1882" ;
   schema:deathDate "1935" ;
   schema:familyName "Noether" ;
   schema:givenName "Emmy" ;
   schema:name "Emmy Noether" ;
    .

<http://worldcat.org/isbn/9780801896934>
    a schema:ProductModel ;
   schema:isbn "0801896932" ;
   schema:isbn "9780801896934" ;
    .

<http://worldcat.org/isbn/9780801896941>
    a schema:ProductModel ;
   schema:isbn "0801896940" ;
   schema:isbn "9780801896941" ;
    .


Content-negotiable representations

Fermer la fenêtre

Veuillez vous identifier dans WorldCat 

Dont have an account? You can easily créez un compte gratuit.