コンテンツへ移動
Emmy Noether's wonderful theorem 資料のプレビュー
閉じる資料のプレビュー
確認中…

Emmy Noether's wonderful theorem

著者: Dwight E Neuenschwander
出版: Baltimore, Md. : Johns Hopkins University Press, ©2011.
エディション/フォーマット:   book_printbook : Englishすべてのエディションとフォーマットを見る
データベース:WorldCat
概要:
"A beautiful piece of mathematics, Noether's Theorem touches on every aspect of physics. Emmy Noether proved her theorem in 1915 and published it in 1918. This profound concept demonstrates the connection between conservation laws and symmetries. For instance, the theorem shows that a system invariant under translations of time, space, or rotation will obey the laws of conservation of energy, linear momentum, or
評価:

(まだ評価がありません) 0 件のレビュー - 是非あなたから!

件名:
関連情報:

 

オフラインで入手

&AllPage.SpinnerRetrieving; この資料の所蔵館を検索中…

詳細

関連の人物: Emmy Noether; Emmy Noether
ドキュメントの種類: 図書
すべての著者/寄与者: Dwight E Neuenschwander
ISBN: 0801896940 9780801896941 9780801896934 0801896932
OCLC No.: 654748881
物理形態: xviii, 243 pages : illustrations ; 22 cm
コンテンツ: Preface --
Acknowledgments --
Glossary of symbols --
Primary and auxiliary questions --
1 PROLOGUE --
1.1 Symmetry, invariance, and conservation laws --
1.2 Emmy Noether biographical notes --
WHEN FUNCTIONALS ARE EXTREMAL --
2 Functionals --
2.1 Single-integral functionals --
2.2 Formal definition of a functional --
3 Extremals --
3.1 The Euler-Lagrange Equation --
3.2 Corollaries to the Euler-Lagrange Equation --
3.3 On the equivalence of Hamilton's Principle and Newton's Second Law --
3.4 Where did Hamilton's Principle come from? --
3.5 Why kinetic minus potential energy? --
3.6 Extremals with external constraints --
When functionals are invariant --
4 Invariance --
4.1 Formal definition of Invariance --
4.2 Condition for Invariance: The Rund-Trautman Identity --
4.3 A more liberal definition of Invariance --
5 Emmy Noether's Elegant Theorem --
5.1 Extremal + Invariance = Noether's Theorem --
5.2 The inverse problem: Finding invariances --
5.3 Adiabatic Invariance and Noether's Theorem --
THE INVARIANCE OF FIELDS --
6 Fields and Noether's theorem --
6.1 Multiple-integral functionals --
6.2 Euler-Lagrange Equations for Fields --
6.3 Canonical momenta and the Hamiltonian for Fields --
6.4 Equations of Continuity --
6.5 The Rund-Trautman Identity for Fields --
6.6 Noether's Theorem for Fields --
6.7 Complex fields --
6.8 Global Gauge transformations --
7 Gauge Invariance as a dynamical principle --
7.1 Local Gauge Invariance and the covariant derivative --
7.2 Electrodynamics as a Gauge Theory I: Field tensors --
7.3 Pure electrodynamics, spacetime invariances, and conservation laws --
7.4 Electrodynamics as a Gauge Theory II: Sources and minimal coupling --
7.5 Internal degrees of freedom --
7.6 Non-Abelian Gauge transformations --
POST-NOETHER INVARIANCE --
8 Invariance in phase space --
8.1 Phase Space --
8.2 Hamilton's Principle in Phase Space --
8.3 Noether's Theorem through Hamilton's Equations --
8.4 Hamilton-Jacobi Theory --
9 The action as a generator --
9.1 Conservation of probability and unitary transformations --
9.2 Continuous spacetime transformations in quantum mechanics --
9.3 Epilogue --
APPENDIXES --
A. Scalars, vectors, tensors, and coordinate transformations --
B. Special relativity --
C. Equations of motion in quantum mechanics --
D. Legendre transformations and conjugate variables --
E. The Jacobian --
Bibliography --
Index.
責任者: Dwight E. Neuenschwander.
その他の情報:

概要:

This handy guide includes end-of-chapter questions for review and appendixes detailing key related physics concepts for further study.  続きを読む

レビュー

編集者のレビュー

出版社によるあらすじ

Neuenschwander writes well and gives thorough explanations. Choice 2011

 
ユーザーレビュー
GoodReadsのレビューを取得中…
DOGObooksのレビューを取得中…

タグ

まずはあなたから!

類似資料

関連件名:(5)

この資料を含むリスト (1)

リクエストの確認

あなたは既にこの資料をリクエストしている可能性があります。このリクエストを続行してよろしければ、OK を選択してください。

リンクデータ


Primary Entity

<http://www.worldcat.org/oclc/654748881> # Emmy Noether's wonderful theorem
    a schema:CreativeWork, schema:Book ;
    library:oclcnum "654748881" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/mdu> ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/568994197#Place/baltimore_md> ; # Baltimore, Md.
    schema:about <http://id.worldcat.org/fast/1744696> ; # Noether's theorem
    schema:about <http://dewey.info/class/539.725/e22/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/568994197#Topic/invariantentheorie> ; # Invariantentheorie
    schema:about <http://experiment.worldcat.org/entity/work/data/568994197#Topic/noether_theorem> ; # Noether-Theorem
    schema:about <http://experiment.worldcat.org/entity/work/data/568994197#Person/noether_emmy_1882_1935> ; # Emmy Noether
    schema:about <http://viaf.org/viaf/73918294> ; # Emmy Noether
    schema:author <http://viaf.org/viaf/39275008> ; # Dwight E. Neuenschwander
    schema:bookFormat bgn:PrintBook ;
    schema:copyrightYear "2011" ;
    schema:datePublished "2011" ;
    schema:description ""A beautiful piece of mathematics, Noether's Theorem touches on every aspect of physics. Emmy Noether proved her theorem in 1915 and published it in 1918. This profound concept demonstrates the connection between conservation laws and symmetries. For instance, the theorem shows that a system invariant under translations of time, space, or rotation will obey the laws of conservation of energy, linear momentum, or angular momentum, respectively. This exciting result offers a rich unifying principle for all of physics."@en ;
    schema:description ""Dwight E. Neuenschwander's introduction to the theorem's genesis, applications, and consequences artfully unpacks its universal importance and unsurpassed elegance. Drawing from over thirty years of teaching the subject, Neuenschwander uses mechanics, optics, geometry, and field theory to point the way to a deep understanding of Noether's Theorem. The three sections provide a step-by-step, simple approach to the less-complex concepts surrounding the theorem, in turn instilling the knowledge and confidence needed to grasp the full wonder it encompasses. Illustrations and worked examples throughout each chapter serve as signposts on the way to this apex of physics."--Publisher's description."@en ;
    schema:description "Preface -- Acknowledgments -- Glossary of symbols -- Primary and auxiliary questions -- 1 PROLOGUE -- 1.1 Symmetry, invariance, and conservation laws -- 1.2 Emmy Noether biographical notes -- WHEN FUNCTIONALS ARE EXTREMAL -- 2 Functionals -- 2.1 Single-integral functionals -- 2.2 Formal definition of a functional -- 3 Extremals -- 3.1 The Euler-Lagrange Equation -- 3.2 Corollaries to the Euler-Lagrange Equation -- 3.3 On the equivalence of Hamilton's Principle and Newton's Second Law -- 3.4 Where did Hamilton's Principle come from? -- 3.5 Why kinetic minus potential energy? -- 3.6 Extremals with external constraints -- When functionals are invariant -- 4 Invariance -- 4.1 Formal definition of Invariance -- 4.2 Condition for Invariance: The Rund-Trautman Identity -- 4.3 A more liberal definition of Invariance -- 5 Emmy Noether's Elegant Theorem -- 5.1 Extremal + Invariance = Noether's Theorem -- 5.2 The inverse problem: Finding invariances -- 5.3 Adiabatic Invariance and Noether's Theorem -- THE INVARIANCE OF FIELDS -- 6 Fields and Noether's theorem -- 6.1 Multiple-integral functionals -- 6.2 Euler-Lagrange Equations for Fields -- 6.3 Canonical momenta and the Hamiltonian for Fields -- 6.4 Equations of Continuity -- 6.5 The Rund-Trautman Identity for Fields -- 6.6 Noether's Theorem for Fields -- 6.7 Complex fields -- 6.8 Global Gauge transformations -- 7 Gauge Invariance as a dynamical principle -- 7.1 Local Gauge Invariance and the covariant derivative -- 7.2 Electrodynamics as a Gauge Theory I: Field tensors -- 7.3 Pure electrodynamics, spacetime invariances, and conservation laws -- 7.4 Electrodynamics as a Gauge Theory II: Sources and minimal coupling -- 7.5 Internal degrees of freedom -- 7.6 Non-Abelian Gauge transformations -- POST-NOETHER INVARIANCE -- 8 Invariance in phase space -- 8.1 Phase Space -- 8.2 Hamilton's Principle in Phase Space -- 8.3 Noether's Theorem through Hamilton's Equations -- 8.4 Hamilton-Jacobi Theory -- 9 The action as a generator -- 9.1 Conservation of probability and unitary transformations -- 9.2 Continuous spacetime transformations in quantum mechanics -- 9.3 Epilogue -- APPENDIXES -- A. Scalars, vectors, tensors, and coordinate transformations -- B. Special relativity -- C. Equations of motion in quantum mechanics -- D. Legendre transformations and conjugate variables -- E. The Jacobian -- Bibliography -- Index."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/568994197> ;
    schema:inLanguage "en" ;
    schema:name "Emmy Noether's wonderful theorem"@en ;
    schema:productID "654748881" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/654748881#PublicationEvent/baltimore_md_johns_hopkins_university_press_2011> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/568994197#Agent/johns_hopkins_university_press> ; # Johns Hopkins University Press
    schema:workExample <http://worldcat.org/isbn/9780801896934> ;
    schema:workExample <http://worldcat.org/isbn/9780801896941> ;
    umbel:isLike <http://bnb.data.bl.uk/id/resource/GBB0A4537> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/654748881> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/568994197#Agent/johns_hopkins_university_press> # Johns Hopkins University Press
    a bgn:Agent ;
    schema:name "Johns Hopkins University Press" ;
    .

<http://experiment.worldcat.org/entity/work/data/568994197#Person/noether_emmy_1882_1935> # Emmy Noether
    a schema:Person ;
    schema:birthDate "1882" ;
    schema:deathDate "1935" ;
    schema:familyName "Noether" ;
    schema:givenName "Emmy" ;
    schema:name "Emmy Noether" ;
    .

<http://experiment.worldcat.org/entity/work/data/568994197#Place/baltimore_md> # Baltimore, Md.
    a schema:Place ;
    schema:name "Baltimore, Md." ;
    .

<http://experiment.worldcat.org/entity/work/data/568994197#Topic/invariantentheorie> # Invariantentheorie
    a schema:Intangible ;
    schema:name "Invariantentheorie"@en ;
    .

<http://id.worldcat.org/fast/1744696> # Noether's theorem
    a schema:Intangible ;
    schema:name "Noether's theorem"@en ;
    .

<http://viaf.org/viaf/39275008> # Dwight E. Neuenschwander
    a schema:Person ;
    schema:familyName "Neuenschwander" ;
    schema:givenName "Dwight E." ;
    schema:name "Dwight E. Neuenschwander" ;
    .

<http://viaf.org/viaf/73918294> # Emmy Noether
    a schema:Person ;
    schema:birthDate "1882" ;
    schema:deathDate "1935" ;
    schema:familyName "Noether" ;
    schema:givenName "Emmy" ;
    schema:name "Emmy Noether" ;
    .

<http://worldcat.org/isbn/9780801896934>
    a schema:ProductModel ;
    schema:isbn "0801896932" ;
    schema:isbn "9780801896934" ;
    .

<http://worldcat.org/isbn/9780801896941>
    a schema:ProductModel ;
    schema:isbn "0801896940" ;
    schema:isbn "9780801896941" ;
    .


Content-negotiable representations

ウインドウを閉じる

WorldCatにログインしてください 

アカウントをお持ちではないですか?簡単に 無料アカウントを作成することができます。.