skip to content
Ergodic theory, symbolic dynamics, and hyperbolic spaces Preview this item
ClosePreview this item
Checking...

Ergodic theory, symbolic dynamics, and hyperbolic spaces

Author: T Bedford; M S Keane; Caroline Series
Publisher: Oxford ; New York : Oxford University Press, 1991.
Series: Oxford science publications.
Edition/Format:   Print book : EnglishView all editions and formats
Database:WorldCat
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: T Bedford; M S Keane; Caroline Series
ISBN: 019853390X 9780198533900 0198596855 9780198596851
OCLC Number: 22508872
Description: xv, 369 pages : illustrations ; 24 cm.
Contents: An introduction to hyperbolic geometry / Alan F. Beardon --
Ergodic theory and subshifts of finite type / Michael S. Keane --
Dynamics of geodesic and horocycle flows on surfaces of constant negative curvature / Anthony Manning --
Geodesic flows, interval maps, and symbolic dynamics / Roy L. Adler --
Geometrical methods of symbolic coding / Caroline Series --
Closed geodesics and zeta functions / Mark Pollicott --
Continued fractions and related transformations / Dieter H. Mayer --
Probabilistic methods in certain counting problems of ergodic theory / Steven P. Lalley --
A measure on the limit set of a discrete group / Peter J. Nicolls --
Infinite groups as geometric objects (after Gromov) / Etienne Ghys and Pierre de la Harpe --
The theory of negatively curved spaces and groups / James W. Cannon.
Series Title: Oxford science publications.
Responsibility: edited by Tim Bedford, Michael Keane, Caroline Series.
More information:

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/22508872> # Ergodic theory, symbolic dynamics, and hyperbolic spaces
    a schema:Book, schema:CreativeWork ;
    library:oclcnum "22508872" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/364484244#Place/oxford> ; # Oxford
    library:placeOfPublication <http://dbpedia.org/resource/New_York_City> ; # New York
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/enk> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/364484244#Topic/geometry_hyperbolic> ; # Geometry, Hyperbolic
    schema:about <http://dewey.info/class/515.42/e20/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/364484244#Topic/ergodiciteit> ; # Ergodiciteit
    schema:about <http://experiment.worldcat.org/entity/work/data/364484244#Topic/symbolic_dynamics> ; # Symbolic dynamics
    schema:about <http://experiment.worldcat.org/entity/work/data/364484244#Topic/ergodic_theory> ; # Ergodic theory
    schema:about <http://experiment.worldcat.org/entity/work/data/364484244#Thing/calculus> ; # Calculus
    schema:about <http://experiment.worldcat.org/entity/work/data/364484244#Topic/theorie_ergodique> ; # Théorie ergodique
    schema:about <http://experiment.worldcat.org/entity/work/data/364484244#Topic/geometrie_hyperbolique> ; # Géométrie hyperbolique
    schema:bookFormat bgn:PrintBook ;
    schema:contributor <http://viaf.org/viaf/14850666> ; # Caroline Series
    schema:contributor <http://viaf.org/viaf/24681090> ; # T. Bedford
    schema:contributor <http://viaf.org/viaf/44360618> ; # Michael S. Keane
    schema:datePublished "1991" ;
    schema:description "An introduction to hyperbolic geometry / Alan F. Beardon -- Ergodic theory and subshifts of finite type / Michael S. Keane -- Dynamics of geodesic and horocycle flows on surfaces of constant negative curvature / Anthony Manning -- Geodesic flows, interval maps, and symbolic dynamics / Roy L. Adler -- Geometrical methods of symbolic coding / Caroline Series -- Closed geodesics and zeta functions / Mark Pollicott -- Continued fractions and related transformations / Dieter H. Mayer -- Probabilistic methods in certain counting problems of ergodic theory / Steven P. Lalley -- A measure on the limit set of a discrete group / Peter J. Nicolls -- Infinite groups as geometric objects (after Gromov) / Etienne Ghys and Pierre de la Harpe -- The theory of negatively curved spaces and groups / James W. Cannon."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/364484244> ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/364484244#Series/oxford_science_publications> ; # Oxford science publications.
    schema:name "Ergodic theory, symbolic dynamics, and hyperbolic spaces"@en ;
    schema:productID "22508872" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/22508872#PublicationEvent/oxford_new_york_oxford_university_press_1991> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/364484244#Agent/oxford_university_press> ; # Oxford University Press
    schema:url <http://catdir.loc.gov/catdir/enhancements/fy0638/90049666-t.html> ;
    schema:url <http://www.gbv.de/dms/ilmenau/toc/019447183.PDF> ;
    schema:workExample <http://worldcat.org/isbn/9780198596851> ;
    schema:workExample <http://worldcat.org/isbn/9780198533900> ;
    umbel:isLike <http://bnb.data.bl.uk/id/resource/GB9047446> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/22508872> ;
    .


Related Entities

<http://dbpedia.org/resource/New_York_City> # New York
    a schema:Place ;
    schema:name "New York" ;
    .

<http://experiment.worldcat.org/entity/work/data/364484244#Agent/oxford_university_press> # Oxford University Press
    a bgn:Agent ;
    schema:name "Oxford University Press" ;
    .

<http://experiment.worldcat.org/entity/work/data/364484244#Series/oxford_science_publications> # Oxford science publications.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/22508872> ; # Ergodic theory, symbolic dynamics, and hyperbolic spaces
    schema:name "Oxford science publications." ;
    schema:name "Oxford science publications" ;
    .

<http://experiment.worldcat.org/entity/work/data/364484244#Topic/geometrie_hyperbolique> # Géométrie hyperbolique
    a schema:Intangible ;
    schema:name "Géométrie hyperbolique"@en ;
    schema:name "géométrie hyperbolique"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/364484244#Topic/geometry_hyperbolic> # Geometry, Hyperbolic
    a schema:Intangible ;
    schema:name "Geometry, Hyperbolic"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/364484244#Topic/symbolic_dynamics> # Symbolic dynamics
    a schema:Intangible ;
    schema:name "Symbolic dynamics"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/364484244#Topic/theorie_ergodique> # Théorie ergodique
    a schema:Intangible ;
    schema:name "Théorie ergodique"@en ;
    schema:name "théorie ergodique"@en ;
    .

<http://viaf.org/viaf/14850666> # Caroline Series
    a schema:Person ;
    schema:familyName "Series" ;
    schema:givenName "Caroline" ;
    schema:name "Caroline Series" ;
    .

<http://viaf.org/viaf/24681090> # T. Bedford
    a schema:Person ;
    schema:familyName "Bedford" ;
    schema:givenName "T." ;
    schema:name "T. Bedford" ;
    .

<http://viaf.org/viaf/44360618> # Michael S. Keane
    a schema:Person ;
    schema:familyName "Keane" ;
    schema:givenName "Michael S." ;
    schema:givenName "M. S." ;
    schema:name "Michael S. Keane" ;
    .

<http://worldcat.org/isbn/9780198533900>
    a schema:ProductModel ;
    schema:isbn "019853390X" ;
    schema:isbn "9780198533900" ;
    .

<http://worldcat.org/isbn/9780198596851>
    a schema:ProductModel ;
    schema:isbn "0198596855" ;
    schema:isbn "9780198596851" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.