컨텐츠로 이동
Étude mathématique de quelques équations cinétiques collisionnelles 해당 항목을 미리보기
닫기해당 항목을 미리보기
확인중입니다…

Étude mathématique de quelques équations cinétiques collisionnelles

저자: Clément Mouhot; Cédric Villani; École normale supérieure (Lyon).
출판사: [S.l.] : [s.n.], 2004.
논문: Thèse de doctorat : Mathématiques : Lyon, École normale supérieure (sciences) : 2004.
판/형식:   주제/주장 : 눈문/학위논문 : 불어
데이터베이스:WorldCat
요약:
On s'intéresse dans cette thèse à l'étude des solutions des équations de Boltzmann (élastiques et inélastiques) et Landau. Les axes de cette étude sont la régularité des solutions et leur comportement asymptotique, et nous nous attachons systématiquement à quantifier les résultats obtenus. Dans la première partie, d'une part nous considérons les solutions spatialement homogènes de l'équation de
평가:

(아무런 평가가 없습니다.) 0 리뷰와 함께 - 첫번째로 올려주세요.

주제
다음과 같습니다:

 

온라인으로 문서 찾기

이 항목에 대한 링크

도서관에서 사본 찾기

&AllPage.SpinnerRetrieving; 해당항목을 보유하고 있는 도서관을 찾는 중

상세정보

자료 유형: 눈문/학위논문, 인터넷 자료
문서 형식: 책, 인터넷 자원
모든 저자 / 참여자: Clément Mouhot; Cédric Villani; École normale supérieure (Lyon).
OCLC 번호: 493389463
설명: 1 vol. (461 p.) ; 30 cm.
책임: Clément Mouhot ; sous la direction de Cédric Villani.

초록:

On s'intéresse dans cette thèse à l'étude des solutions des équations de Boltzmann (élastiques et inélastiques) et Landau. Les axes de cette étude sont la régularité des solutions et leur comportement asymptotique, et nous nous attachons systématiquement à quantifier les résultats obtenus. Dans la première partie, d'une part nous considérons les solutions spatialement homogènes de l'équation de Boltzmann, pour lesquelles nous montrons la propagation de la régularité et la décroissance des singularités pour des interactions à courte portée, et la propagation de bornes d'intégrabilité pour des interactions à longue portée. D'autre part, nous quantifions la positivité des solutions spatialement inhomogènes, sous des hypothèses de régularité. Dans la deuxième partie, nous donnons des estimations de trou spectral et de coercivité sur les opérateurs de Boltzmann et Landau linéarisés, puis nous prouvons la convergence exponentielle vers l'équilibre avec taux explicite pour un gaz de sphères dures spatialement homogènes. Dans la troisième partie, nous considérons l'équation de Boltzmann spatialement homogène pour les gaz granulaires, pour laquelle nous construisons des solutions pour des modèles d'inélasticité réalistes (mais fortement non-linéaires) et discutons la possibilité de " gel " en temps fini ou asymptotiquement. Puis nous montrons l'existence de profils auto-similaires et étudions le comportement de la solution pour les grandes vitesses. Dans la quatrième partie, nous utilisons une semi-discrétisation de l'opérateur de Boltzmann pour proposer des schémas numériques rapides basés sur les méthodes spectrales ou les méthodes par discrétisation des vitesses.

We are interested in this PhD in the study of solutions to the Boltzmann equation (elastic or inelastic) and the Landau equation. The axis of this study are the regularity and asymptotic behavior of the solutions, and we systematically search for quantitative results. In the first part, we consider on the one hand the spatially homogeneous solutions to the Boltzmann equation, for which we prove propagation of regularity and damping of singularities for short-range interactions, as well as propagation of integrability bounds for long-range interactions. On the other hand, we quantify the positivity of the spatially inhomogeneous solutions, under regularity assumptions. In the second part, we give spectral gap and coercivity estimates for the linearized Boltzmann and Landau operators, and we prove exponential convergence to equilibrium with explicit rate for a gas of spatially homogeneous hard spheres. In the third part, we consider the spatially homogeneous Boltzmann equation for granular gases, for which we construct solutions for realistic models of inelasticity (however strongly non-linear) and discuss the possibility of cooling in finite time or asymptotically. We then show the existence of self-similar profils, and study the behavior of solutions for large velocities. In the forth part, we use a semi-discretization of the Boltzmann operator in order to propose fast numerical schemes based on the spectral method or discrete velocity models.

리뷰

사용자-기여 리뷰
GoodReads 리뷰 가져오는 중…
DOGObooks 리뷰를 가지고 오는 중…

태그

첫번째 되기
요청하신 것을 확인하기

이 항목을 이미 요청하셨을 수도 있습니다. 만약 이 요청을 계속해서 진행하시려면 Ok을 선택하세요.

링크된 데이터


<http://www.worldcat.org/oclc/493389463>
library:oclcnum"493389463"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/493389463>
rdf:typej.2:Thesis
rdf:typeschema:Book
schema:about
schema:about
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2004"
schema:description"We are interested in this PhD in the study of solutions to the Boltzmann equation (elastic or inelastic) and the Landau equation. The axis of this study are the regularity and asymptotic behavior of the solutions, and we systematically search for quantitative results. In the first part, we consider on the one hand the spatially homogeneous solutions to the Boltzmann equation, for which we prove propagation of regularity and damping of singularities for short-range interactions, as well as propagation of integrability bounds for long-range interactions. On the other hand, we quantify the positivity of the spatially inhomogeneous solutions, under regularity assumptions. In the second part, we give spectral gap and coercivity estimates for the linearized Boltzmann and Landau operators, and we prove exponential convergence to equilibrium with explicit rate for a gas of spatially homogeneous hard spheres. In the third part, we consider the spatially homogeneous Boltzmann equation for granular gases, for which we construct solutions for realistic models of inelasticity (however strongly non-linear) and discuss the possibility of cooling in finite time or asymptotically. We then show the existence of self-similar profils, and study the behavior of solutions for large velocities. In the forth part, we use a semi-discretization of the Boltzmann operator in order to propose fast numerical schemes based on the spectral method or discrete velocity models."
schema:description"On s'intéresse dans cette thèse à l'étude des solutions des équations de Boltzmann (élastiques et inélastiques) et Landau. Les axes de cette étude sont la régularité des solutions et leur comportement asymptotique, et nous nous attachons systématiquement à quantifier les résultats obtenus. Dans la première partie, d'une part nous considérons les solutions spatialement homogènes de l'équation de Boltzmann, pour lesquelles nous montrons la propagation de la régularité et la décroissance des singularités pour des interactions à courte portée, et la propagation de bornes d'intégrabilité pour des interactions à longue portée. D'autre part, nous quantifions la positivité des solutions spatialement inhomogènes, sous des hypothèses de régularité. Dans la deuxième partie, nous donnons des estimations de trou spectral et de coercivité sur les opérateurs de Boltzmann et Landau linéarisés, puis nous prouvons la convergence exponentielle vers l'équilibre avec taux explicite pour un gaz de sphères dures spatialement homogènes. Dans la troisième partie, nous considérons l'équation de Boltzmann spatialement homogène pour les gaz granulaires, pour laquelle nous construisons des solutions pour des modèles d'inélasticité réalistes (mais fortement non-linéaires) et discutons la possibilité de " gel " en temps fini ou asymptotiquement. Puis nous montrons l'existence de profils auto-similaires et étudions le comportement de la solution pour les grandes vitesses. Dans la quatrième partie, nous utilisons une semi-discrétisation de l'opérateur de Boltzmann pour proposer des schémas numériques rapides basés sur les méthodes spectrales ou les méthodes par discrétisation des vitesses."
schema:exampleOfWork<http://worldcat.org/entity/work/id/688098374>
schema:name"Étude mathématique de quelques équations cinétiques collisionnelles"
schema:publisher
schema:url

Content-negotiable representations

윈도우 닫기

WorldCat에 로그인 하십시오 

계정이 없으세요? 아주 간단한 절차를 통하여 무료 계정을 만드실 수 있습니다.