přejít na obsah
Euler through time : a new look at old themes Náhled dokumentu
ZavřítNáhled dokumentu
Probíhá kontrola...

Euler through time : a new look at old themes

Autor V S Varadarajan
Vydavatel: Providence, R.I. : American Mathematical Society, ©2006.
Vydání/formát:   Kniha : Biography : EnglishZobrazit všechny vydání a formáty
Databáze:WorldCat
Shrnutí:
Euler is one of the greatest and most prolific mathematicians of all time. He wrote the first accessible books on calculus, created the theory of circular functions, and discovered new areas of research such as elliptic integrals, the calculus of variations, graph theory, divergent series, and so on. It took hundreds of years for his successors to develop in full the theories he began, and some of his themes are  Přečíst více...
Hodnocení:

(ještě nehodnoceno) 0 zobrazit recenze - Buďte první.

Předmětová hesla:
Více podobných

 

Vyhledat exemplář v knihovně

&AllPage.SpinnerRetrieving; Vyhledávání knihoven, které vlastní tento dokument...

Detaily

Žánr/forma: History
Osoba: Leonhard Euler; Leonhard Euler; Leonhard Euler
Typ materiálu: Biography, Internetový zdroj
Typ dokumentu: Book, Internet Resource
Všichni autoři/tvůrci: V S Varadarajan
ISBN: 0821835807 9780821835807
OCLC číslo: 62493606
Popis: viii, 302 p. : facsims. ; 27 cm.
Obsahy: Leonhard Euler (1707-1783) --
The Universal mathematician --
Zeta values --
Euler-Maclaurin sum formula --
Divergent series and integrals --
Euler products.
Odpovědnost: V.S. Varadarajan.
Více informací:

Anotace:

Euler is one of the greatest and most prolific mathematicians of all time. This book examines his work and its relation to current mathematics. It also treats the progression of ideas regarding  Přečíst více...

Recenze

Recenze vložené uživatelem
Nahrávání recenzí GoodReads...
Přebírání recenzí DOGO books...

Štítky

Buďte první.
Potvrdit tento požadavek

Tento dokument jste si již vyžádali. Prosím vyberte Ok pokud chcete přesto v žádance pokračovat.

Propojená data


<http://www.worldcat.org/oclc/62493606>
library:oclcnum"62493606"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/62493606>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
<http://id.loc.gov/authorities/subjects/sh85120145>
rdf:typeschema:Intangible
schema:name"Sequences (Mathematics)--History--19th century."@en
schema:name"Sequences (Mathematics)--History--18th century."@en
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
<http://id.loc.gov/authorities/subjects/sh2010104016>
rdf:typeschema:Intangible
schema:name"Number theory--History--19th century."@en
schema:name"Number theory--History--18th century."@en
schema:copyrightYear"2006"
schema:creator
schema:datePublished"2006"
schema:description"Euler is one of the greatest and most prolific mathematicians of all time. He wrote the first accessible books on calculus, created the theory of circular functions, and discovered new areas of research such as elliptic integrals, the calculus of variations, graph theory, divergent series, and so on. It took hundreds of years for his successors to develop in full the theories he began, and some of his themes are still at the center of today's mathematics. It is of great interest therefore to examine his work and its relation to current mathematics. This book attempts to do that. In number theory the discoveries he made empirically would require for their eventual understanding such sophisticated developments as the reciprocity laws and class field theory. His pioneering work on elliptic integrals is the precursor of the modern theory of abelian functions and abelian integrals. His evaluation of zeta and multizeta values is not only a fantastic and exciting story but very relevant to us, because they are at the confluence of much research in algebraic geometry and number theory today (Chapters 2 and 3 of the book). Anticipating his successors by more than a century, Euler created a theory of summation of series that do not converge in the traditional manner. Chapter 5 of the book treats the progression of ideas regarding divergent series from Euler to many parts of modern analysis and quantum physics. The last chapter contains a brief treatment of Euler products. Euler discovered the product formula over the primes for the zeta function as well as for a small number of what are now called Dirichlet $L$-functions. Here the book goes into the development of the theory of such Euler products and the role they play in number theory, thus offering the reader a glimpse of current developments (the Langlands program)."@en
schema:description"Leonhard Euler (1707-1783) -- The Universal mathematician -- Zeta values -- Euler-Maclaurin sum formula -- Divergent series and integrals -- Euler products."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/46857812>
schema:genre"History"@en
schema:genre"History."@en
schema:inLanguage"en"
schema:name"Euler through time : a new look at old themes"@en
schema:numberOfPages"302"
schema:publisher
schema:url
schema:workExample
umbel:isLike<http://bnb.data.bl.uk/id/resource/GBA652884>

Content-negotiable representations

Zavřít okno

Prosím přihlaste se do WorldCat 

Nemáte účet? Můžete si jednoduše vytvořit bezplatný účet.