skip to content
Extending the scalability of linkage learning genetic algorithms : theory & practice Preview this item
ClosePreview this item
Checking...

Extending the scalability of linkage learning genetic algorithms : theory & practice

Author: Ying-ping Chen
Publisher: Berlin : Springer-Verlag, ©2006.
Series: Studies in fuzziness and soft computing, v. 190.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Publication:Springer e-books
Summary:
Genetic algorithms (GAs) are powerful search techniques based on principles of evolution and widely applied to solve problems in many disciplines. However, unable to learn linkage among genes, most GAs employed in practice nowadays suffer from the linkage problem, which refers to the need of appropriately arranging or adaptively ordering the genes on chromosomes during the evolutionary process. These GAs require  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Chen, Ying-ping.
Extending the scalability of linkage learning genetic algorithms.
Berlin : Springer-Verlag, ©2006
(DLC) 2005931997
(OCoLC)62092052
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Ying-ping Chen
ISBN: 9783540324133 3540324135 3540284591 9783540284598
OCLC Number: 262681823
Description: 1 online resource (xvi, 120 pages) : illustrations.
Contents: Introduction --
Genetic Algorithms and Genetic Linkage --
Genetic Linkage Learning Techniques --
Linkage Learning Genetic Algorithm --
Preliminaries: Assumptions and the Test Problem --
A First Improvement: Using Promoters --
Convergence Time for the Linkage Learning Genetic Algorithm.-Introducing Subchromosome Representations --
Conclusions.
Series Title: Studies in fuzziness and soft computing, v. 190.
Responsibility: Ying-ping Chen.
More information:

Abstract:

However, most GAs employed in practice nowadays are unable to learn genetic linkage and suffer from the linkage problem. The linkage learning genetic algorithm (LLGA) was proposed to tackle the  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/262681823> # Extending the scalability of linkage learning genetic algorithms : theory & practice
    a schema:MediaObject, schema:CreativeWork, schema:Book ;
   library:oclcnum "262681823" ;
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/gw> ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/46515826#Place/berlin> ; # Berlin
   schema:about <http://experiment.worldcat.org/entity/work/data/46515826#Topic/ingenierie> ; # Ingénierie
   schema:about <http://experiment.worldcat.org/entity/work/data/46515826#Topic/algorithmes_genetiques> ; # Algorithmes génétiques
   schema:about <http://id.worldcat.org/fast/939996> ; # Genetic algorithms
   schema:about <http://dewey.info/class/519.62/e22/> ;
   schema:bookFormat schema:EBook ;
   schema:copyrightYear "2006" ;
   schema:creator <http://viaf.org/viaf/33976578> ; # Ying-ping Chen
   schema:datePublished "2006" ;
   schema:description "Genetic algorithms (GAs) are powerful search techniques based on principles of evolution and widely applied to solve problems in many disciplines. However, unable to learn linkage among genes, most GAs employed in practice nowadays suffer from the linkage problem, which refers to the need of appropriately arranging or adaptively ordering the genes on chromosomes during the evolutionary process. These GAs require their users to possess prior domain knowledge of the problem such that the genes on chromosomes can be correctly arranged in advance. One way to alleviate the burden of GA users is to make the algorithm capable of adapting and learning genetic linkage by itself. In order to tackle the linkage problem, the linkage learning genetic algorithm (LLGA) was proposed using a unique combination of the (gene number, allele) coding scheme and an exchange crossover to permit GAs to learn tight linkage of building blocks through a special probabilistic expression. While the LLGA performs much better on badly scaled problems than simple GAs, it does not work well on uniformly scaled problems as other competent GAs. Therefore, we need to understand why it is so and need to know how to design a better LLGA or whether there are certain limits of such a linkage learning process. This book aims to gain better understanding of the LLGA in theory and to improve the LLGA's performance in practice. It starts with a survey and classification of the existing genetic linkage learning techniques and describes the steps and approaches taken to tackle the research topics, including using promoters, developing the convergence time model, and adopting subchromosomes. It also provides the experimental results for observation of the linkage learning process as well as for verification of the theoretical models proposed in this study."@en ;
   schema:description "Introduction -- Genetic Algorithms and Genetic Linkage -- Genetic Linkage Learning Techniques -- Linkage Learning Genetic Algorithm -- Preliminaries: Assumptions and the Test Problem -- A First Improvement: Using Promoters -- Convergence Time for the Linkage Learning Genetic Algorithm.-Introducing Subchromosome Representations -- Conclusions."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/46515826> ;
   schema:genre "Electronic books"@en ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://worldcat.org/issn/1434-9922> ; # Studies in fuzziness and soft computing ;
   schema:isSimilarTo <http://www.worldcat.org/oclc/62092052> ;
   schema:name "Extending the scalability of linkage learning genetic algorithms : theory & practice"@en ;
   schema:productID "262681823" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/262681823#PublicationEvent/berlin_springer_verlag_2006> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/46515826#Agent/springer_verlag> ; # Springer-Verlag
   schema:url <https://link.springer.com/openurl?genre=book&isbn=978-3-540-28459-8> ;
   schema:url <http://rave.ohiolink.edu/ebooks/ebc/11339380> ;
   schema:url <http://link.springer.com/10.1007/b102053> ;
   schema:url <http://www.myilibrary.com?id=139033> ;
   schema:url <http://link.springer.com/openurl?genre=book&isbn=978-3-540-28459-8> ;
   schema:url <http://dx.doi.org/10.1007/b102053> ;
   schema:url <http://rd.springer.com/openurl?genre=book&isbn=978-3-540-28459-8> ;
   schema:url <http://www.springerlink.com/openurl.asp?genre=book&isbn=978-3-540-28459-8> ;
   schema:workExample <http://worldcat.org/isbn/9783540284598> ;
   schema:workExample <http://worldcat.org/isbn/9783540324133> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/262681823> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/46515826#Agent/springer_verlag> # Springer-Verlag
    a bgn:Agent ;
   schema:name "Springer-Verlag" ;
    .

<http://experiment.worldcat.org/entity/work/data/46515826#Topic/algorithmes_genetiques> # Algorithmes génétiques
    a schema:Intangible ;
   schema:name "Algorithmes génétiques"@en ;
   schema:name "Algorithmes génétiques"@fr ;
    .

<http://id.worldcat.org/fast/939996> # Genetic algorithms
    a schema:Intangible ;
   schema:name "Genetic algorithms"@en ;
    .

<http://viaf.org/viaf/33976578> # Ying-ping Chen
    a schema:Person ;
   schema:familyName "Chen" ;
   schema:givenName "Ying-ping" ;
   schema:name "Ying-ping Chen" ;
    .

<http://worldcat.org/isbn/9783540284598>
    a schema:ProductModel ;
   schema:isbn "3540284591" ;
   schema:isbn "9783540284598" ;
    .

<http://worldcat.org/isbn/9783540324133>
    a schema:ProductModel ;
   schema:isbn "3540324135" ;
   schema:isbn "9783540324133" ;
    .

<http://worldcat.org/issn/1434-9922> # Studies in fuzziness and soft computing ;
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/262681823> ; # Extending the scalability of linkage learning genetic algorithms : theory & practice
   schema:issn "1434-9922" ;
   schema:name "Studies in fuzziness and soft computing ;" ;
   schema:name "Studies in fuzziness and soft computing," ;
    .

<http://www.worldcat.org/oclc/62092052>
    a schema:CreativeWork ;
   rdfs:label "Extending the scalability of linkage learning genetic algorithms." ;
   schema:description "Print version:" ;
   schema:isSimilarTo <http://www.worldcat.org/oclc/262681823> ; # Extending the scalability of linkage learning genetic algorithms : theory & practice
    .

<http://www.worldcat.org/title/-/oclc/262681823>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
   schema:about <http://www.worldcat.org/oclc/262681823> ; # Extending the scalability of linkage learning genetic algorithms : theory & practice
   schema:dateModified "2017-12-25" ;
   void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.