skip to content
Extremals for the Sobolev inequality and the quaternionic contact Yamabe problem Preview this item
ClosePreview this item
Checking...

Extremals for the Sobolev inequality and the quaternionic contact Yamabe problem

Author: Stefan P Ivanov; Dimiter N Vassilev
Publisher: Singapore ; Hackensack, NJ : World Scientific, ©2011.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Database:WorldCat
Summary:
The aim of this book is to give an account of some important new developments in the study of the Yamabe problem on quaternionic contact manifolds. This book covers the conformally flat case of the quaternionic Heisenberg group or sphere, where complete and detailed proofs are given, together with a chapter on the conformal curvature tensor introduced very recently by the authors. The starting point of the  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Ivanov, Stefan P.
Extremals for the Sobolev inequality and the quaternionic contact Yamabe problem.
Singapore ; Hackensack, NJ : World Scientific, ©2011
(OCoLC)496951750
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Stefan P Ivanov; Dimiter N Vassilev
ISBN: 9789814295710 981429571X
OCLC Number: 754765357
Description: 1 online resource (xvii, 219 pages)
Contents: Machine generated contents note: 1. Variational problems related to Sobolev inequalities on Carnot groups --
1.1. Introduction --
1.2. Carnot groups --
1.3. Sobolev spaces and their weak topologies --
1.4. The best constant in the Folland-Stein inequality --
1.5. The best constant in the presence of symmetries --
1.6. Global regularity of weak solutions --
1.6.1. Global boundedness of weak solutions --
1.6.2. The Yamabe equation --
Cinfinity regularity of weak solutions --
2. Groups of Heisenberg and Iwasawa types explicit solutions to the Yamabe equation --
2.1. Introduction --
2.2. Groups of Heisenberg and Iwasawa types --
2.3. The Cayley transform, inversion and Kelvin transform --
2.3.1. The Cayley transform --
2.3.2. Inversion on groups of Heisenberg type --
2.3.3. The Kelvin transform --
2.4. Explicit entire solutions of the Yamabe equation on groups of Heisenberg type --
3. Symmetries of solutions on groups of Iwasawa type --
3.1. Intoduction --
3.2. The Hopf Lemma. 3.3. The partially symmetric solutions have cylindrical symmetry --
3.4. Determination of the cylindrically symmetric solutions of the Yamabe equation --
3.5. Solution of the partially symmetric Yamabe problem --
3.6. Applications. Euclidean Hardy-Sobolev inequalities --
3.6.1. A non-linear equation in Rn related to the Yamabe equation on groups of Heisenberg type --
3.6.2. The best constant and extremals of the Hardy-Sobolev inequality --
4. Quaternionic contact manifolds --
Connection, curvature and qc-Einstein structures --
4.1. Introduction --
4.2. Quaternionic contact structures and the Biquard connection --
4.3. The curvature of the Biquard connection --
4.3.1. The first Bianchi identity and Ricci tensors --
4.3.2. Local structure equations of qc manifolds --
4.3.3. The curvature tensor --
4.3.4. The flat model --
The qc Heisenberg group --
4.4. qc-Einstein quaternionic contact structures --
4.4.1. Examples of qc-Einstein structures --
4.4.2. Cones over a quaternionic contact structure --
5. Quaternionic contact conformal curvature tensor. 5.1. Introduction --
5.2. Quaternionic contact conformal transformations --
5.2.1. The quaternionic Cayley transform --
5.3. qc conformal curvature --
6. The quaternionic contact Yamabe problem and the Yamabe constant of the qc spheres --
6.1. Introduction --
6.2. Some background --
6.2.1. The qc normal frame --
6.2.2. Horizontal divergence theorem --
6.2.3. Conformal transformations of the quaternionic Heisenberg group preserving the vanishing of the torsion --
6.3. Constant qc scalar curvature and the divergence formula --
6.4. Divergence formulas --
6.5. The divergence theorem in dimension seven --
6.6. The qc Yamabe problem on the qc sphere and quaternionic Heisenberg group in dimension seven --
6.7. The qc Yamabe constant on the qc sphere and the best constant in the Folland-Stein embedding on the quaternionic Heisenberg group --
7. CR manifolds --
Cartan and Chern-Moser tensor and theorem --
7.1. Introduction --
7.2. CR-manifolds and Tanaka-Webster connection --
7.3. The Cartan-Chern-Moser theorem --
7.3.1. The three dimensional case.
Responsibility: Stefan P. Ivanov, Dimiter N. Vassilev.

Abstract:

The aim of this book is to give an account of some important new developments in the study of the Yamabe problem on quaternionic contact manifolds. This book covers the conformally flat case of the quaternionic Heisenberg group or sphere, where complete and detailed proofs are given, together with a chapter on the conformal curvature tensor introduced very recently by the authors. The starting point of the considered problems is the well-known Folland-Stein Sobolev type embedding and its sharp form that is determined based on geometric analysis. This book also sits at the interface of the generalization of these fundamental questions motivated by the Carnot-Caratheodory geometry of quaternionic contact manifolds, which have been recently the focus of extensive research motivated by problems in analysis, geometry, mathematical physics and the applied sciences. Through the beautiful resolution of the Yamabe problem on model quaternionic contact spaces, the book serves as an introduction to this field for graduate students and novice researchers, and as a research monograph suitable for experts as well.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/754765357> # Extremals for the Sobolev inequality and the quaternionic contact Yamabe problem
    a schema:Book, schema:CreativeWork, schema:MediaObject ;
    library:oclcnum "754765357" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/si> ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/370797107#Place/hackensack_nj> ; # Hackensack, NJ
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/370797107#Place/singapore> ; # Singapore
    schema:about <http://id.worldcat.org/fast/876504> ; # Contact manifolds
    schema:about <http://id.worldcat.org/fast/948521> ; # Group theory
    schema:about <http://dewey.info/class/516.36/e22/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/370797107#Topic/mathematics_geometry_differential> ; # MATHEMATICS--Geometry--Differential
    schema:about <http://id.worldcat.org/fast/940919> ; # Geometry, Differential
    schema:bookFormat schema:EBook ;
    schema:contributor <http://experiment.worldcat.org/entity/work/data/370797107#Person/vassilev_dimiter_n> ; # Dimiter N. Vassilev
    schema:copyrightYear "2011" ;
    schema:creator <http://experiment.worldcat.org/entity/work/data/370797107#Person/ivanov_stefan_p> ; # Stefan P. Ivanov
    schema:datePublished "2011" ;
    schema:description "The aim of this book is to give an account of some important new developments in the study of the Yamabe problem on quaternionic contact manifolds. This book covers the conformally flat case of the quaternionic Heisenberg group or sphere, where complete and detailed proofs are given, together with a chapter on the conformal curvature tensor introduced very recently by the authors. The starting point of the considered problems is the well-known Folland-Stein Sobolev type embedding and its sharp form that is determined based on geometric analysis. This book also sits at the interface of the generalization of these fundamental questions motivated by the Carnot-Caratheodory geometry of quaternionic contact manifolds, which have been recently the focus of extensive research motivated by problems in analysis, geometry, mathematical physics and the applied sciences. Through the beautiful resolution of the Yamabe problem on model quaternionic contact spaces, the book serves as an introduction to this field for graduate students and novice researchers, and as a research monograph suitable for experts as well."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/370797107> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/496951750> ;
    schema:name "Extremals for the Sobolev inequality and the quaternionic contact Yamabe problem"@en ;
    schema:productID "754765357" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/754765357#PublicationEvent/singapore_hackensack_nj_world_scientific_2011> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/370797107#Agent/world_scientific> ; # World Scientific
    schema:url <http://site.ebrary.com/id/10493495> ;
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=389628> ;
    schema:workExample <http://worldcat.org/isbn/9789814295710> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/754765357> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/370797107#Agent/world_scientific> # World Scientific
    a bgn:Agent ;
    schema:name "World Scientific" ;
    .

<http://experiment.worldcat.org/entity/work/data/370797107#Person/ivanov_stefan_p> # Stefan P. Ivanov
    a schema:Person ;
    schema:familyName "Ivanov" ;
    schema:givenName "Stefan P." ;
    schema:name "Stefan P. Ivanov" ;
    .

<http://experiment.worldcat.org/entity/work/data/370797107#Person/vassilev_dimiter_n> # Dimiter N. Vassilev
    a schema:Person ;
    schema:familyName "Vassilev" ;
    schema:givenName "Dimiter N." ;
    schema:name "Dimiter N. Vassilev" ;
    .

<http://experiment.worldcat.org/entity/work/data/370797107#Place/hackensack_nj> # Hackensack, NJ
    a schema:Place ;
    schema:name "Hackensack, NJ" ;
    .

<http://experiment.worldcat.org/entity/work/data/370797107#Topic/mathematics_geometry_differential> # MATHEMATICS--Geometry--Differential
    a schema:Intangible ;
    schema:name "MATHEMATICS--Geometry--Differential"@en ;
    .

<http://id.worldcat.org/fast/876504> # Contact manifolds
    a schema:Intangible ;
    schema:name "Contact manifolds"@en ;
    .

<http://id.worldcat.org/fast/940919> # Geometry, Differential
    a schema:Intangible ;
    schema:name "Geometry, Differential"@en ;
    .

<http://id.worldcat.org/fast/948521> # Group theory
    a schema:Intangible ;
    schema:name "Group theory"@en ;
    .

<http://worldcat.org/isbn/9789814295710>
    a schema:ProductModel ;
    schema:isbn "981429571X" ;
    schema:isbn "9789814295710" ;
    .

<http://www.worldcat.org/oclc/496951750>
    a schema:CreativeWork ;
    rdfs:label "Extremals for the Sobolev inequality and the quaternionic contact Yamabe problem." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/754765357> ; # Extremals for the Sobolev inequality and the quaternionic contact Yamabe problem
    .

<http://www.worldcat.org/title/-/oclc/754765357>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
    schema:about <http://www.worldcat.org/oclc/754765357> ; # Extremals for the Sobolev inequality and the quaternionic contact Yamabe problem
    schema:dateModified "2016-11-25" ;
    void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.