skip to content
Fast fourier transform and convolution algorithms Preview this item
ClosePreview this item
Checking...

Fast fourier transform and convolution algorithms

Author: Henri J Nussbaumer
Publisher: Berlin ; Heidelberg ; New York ; London ; Paris ; Tokyo ; Hong Kong : Springer, 1990.
Series: Springer series in information sciences, 2.
Edition/Format:   Print book : German : 2., corr. and updated ed., 2. printView all editions and formats
Database:WorldCat
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: Henri J Nussbaumer
ISBN: 354011825X 9783540118251 038711825X 9780387118253
OCLC Number: 75166003
Notes: Literaturverz. S. 269 - 273.
Description: XII, 276 S. : 38 graph. Darst. ; 24 cm.
Contents: 1 Introduction.- 1.1 Introductory Remarks.- 1.2 Notations.- 1.3 The Structure of the Book.- 2 Elements of Number Theory and Polynomial Algebra.- 2.1 Elementary Number Theory.- 2.1.1 Divisibility of Integers.- 2.1.2 Congruences and Residues.- 2.1.3 Primitive Roots.- 2.1.4 Quadratic Residues.- 2.1.5 Mersenne and Fermat Numbers.- 2.2 Polynomial Algebra.- 2.2.1 Groups.- 2.2.2 Rings and Fields.- 2.2.3 Residue Polynomials.- 2.2.4 Convolution and Polynomial Product Algorithms in Polynomial Algebra.- 3 Fast Convolution Algorithms.- 3.1 Digital Filtering Using Cyclic Convolutions.- 3.1.1 Overlap-Add Algorithm.- 3.1.2 Overlap-Save Algorithm.- 3.2 Computation of Short Convolutions and Polynomial Products.- 3.2.1 Computation of Short Convolutions by the Chinese Remainder Theorem.- 3.2.2 Multiplications Modulo Cyclotomic Polynomials.- 3.2.3 Matrix Exchange Algorithm.- 3.3 Computation of Large Convolutions by Nesting of Small Convolutions.- 3.3.1 The Agarwal-Cooley Algorithm.- 3.3.2 The Split Nesting Algorithm.- 3.3.3 Complex Convolutions.- 3.3.4 Optimum Block Length for Digital Filters.- 3.4 Digital Filtering by Multidimensional Techniques.- 3.5 Computation of Convolutions by Recursive Nesting of Polynomials.- 3.6 Distributed Arithmetic.- 3.7 Short Convolution and Polynomial Product Algorithms.- 3.7.1 Short Circular Convolution Algorithms.- 3.7.2 Short Polynomial Product Algorithms.- 3.7.3 Short Aperiodic Convolution Algorithms.- 4 The Fast Fourier Transform.- 4.1 The Discrete Fourier Transform.- 4.1.1 Properties of the DFT.- 4.1.2 DFTs of Real Sequences.- 4.1.3 DFTs of Odd and Even Sequences.- 4.2 The Fast Fourier Transform Algorithm.- 4.2.1 The Radix-2 FFT Algorithm.- 4.2.2 The Radix-4 FFT Algorithm.- 4.2.3 Implementation of FFT Algorithms.- 4.2.4 Quantization Effects in the FFT.- 4.3 The Rader-Brenner FFT.- 4.4 Multidimensional FFTs.- 4.5 The Bruun Algorithm.- 4.6 FFT Computation of Convolutions.- 5 Linear Filtering Computation of Discrete Fourier Transforms.- 5.1 The Chirp z-Transform Algorithm.- 5.1.1 Real Time Computation of Convolutions and DFTs Using the Chirp z-Transform.- 5.1.2 Recursive Computation of the Chirp z-Transform.- 5.1.3 Factorizations in the Chirp Filter.- 5.2 Rader's Algorithm.- 5.2.1 Composite Algorithms.- 5.2.2 Polynomial Formulation of Rader's Algorithm.- 5.2.3 Short DFT Algorithms.- 5.3 The Prime Factor FFT.- 5.3.1 Multidimensional Mapping of One-Dimensional DFTs.- 5.3.2 The Prime Factor Algorithm.- 5.3.3 The Split Prime Factor Algorithm.- 5.4 The Winograd Fourier Transform Algorithm (WFTA).- 5.4.1 Derivation of the Algorithm.- 5.4.2 Hybrid Algorithms.- 5.4.3 Split Nesting Algorithms.- 5.4.4 Multidimensional DFTs.- 5.4.5 Programming and Quantization Noise Issues.- 5.5 Short DFT Algorithms.- 5.5.1 2-Point DFT.- 5.5.2 3-Point DFT.- 5.5.3 4-Point DFT.- 5.5.4 5-Point DFT.- 5.5.5 7-Point DFT.- 5.5.6 8-Point DFT.- 5.5.7 9-Point DFT.- 5.5.8 16-Point DFT.- 6 Polynomial Transforms.- 6.1 Introduction to Polynomial Transforms.- 6.2 General Definition of Polynomial Transforms.- 6.2.1 Polynomial Transforms with Roots in a Field of Polynomials.- 6.2.2 Polynomial Transforms with Composite Roots.- 6.3 Computation of Polynomial Transforms and Reductions.- 6.4 Two-Dimensional Filtering Using Polynomial Transforms.- 6.4.1 Two-Dimensional Convolutions Evaluated by Polynomial Transforms and Polynomial Product Algorithms.- 6.4.2 Example of a Two-Dimensional Convolution Computed by Polynomial Transforms.- 6.4.3 Nesting Algorithms.- 6.4.4 Comparison with Conventional Convolution Algorithms.- 6.5 Polynomial Transforms Defined in Modified Rings.- 6.6 Complex Convolutions.- 6.7 Multidimensional Polynomial Transforms.- 7 Computation of Discrete Fourier Transforms by Polynomial Transforms.- 7.1 Computation of Multidimensional DFTs by Polynomial Transforms.- 7.1.1 The Reduced DFT Algorithm.- 7.1.2 General Definition of the Algorithm.- 7.1.3 Multidimensional DFTs.- 7.1.4 Nesting and Prime Factor Algorithms.- 7.1.5 DFT Computation Using Polynomial Transforms Defined in Modified Rings of Polynomials.- 7.2 DFTs Evaluated by Multidimensional Correlations and Polynomial Transforms.- 7.2.1 Derivation of the Algorithm.- 7.2.2 Combination of the Two Polynomial Transform Methods.- 7.3 Comparison with the Conventional FFT.- 7.4 Odd DFT Algorithms.- 7.4.1 Reduced DFT Algorithm. N = 4.- 7.4.2 Reduced DFT Algorithm. N = 8.- 7.4.3 Reduced DFT Algorithm. N = 9.- 7.4.4 Reduced DFT Algorithm. N = 16.- 8 Number Theoretic Transforms.- 8.1 Definition of the Number Theoretic Transforms.- 8.1.1 General Properties of NTTs.- 8.2 Mersenne Transforms.- 8.2.1 Definition of Mersenne Transforms.- 8.2.2 Arithmetic Modulo Mersenne Numbers.- 8.2.3 Illustrative Example.- 8.3 Fermat Number Transforms.- 8.3.1 Definition of Fermat Number Transforms.- 8.3.2 Arithmetic Modulo Fermat Numbers.- 8.3.3 Computation of Complex Convolutions by FNTs.- 8.4 Word Length and Transform Length Limitations.- 8.5 Pseudo Transforms.- 8.5.1 Pseudo Mersenne Transforms.- 8.5.2 Pseudo Fermat Number Transforms.- 8.6 Complex NTTs.- 8.7 Comparison with the FFT.- Appendix A Relationship Between DFT and Conyolution Polynomial Transform Algorithms.- A.1 Computation of Multidimensional DFT's by the Inverse Polynomial Transform Algorithm.- A.1.1 The Inverse Polynomial Transform Algorithm.- A.1.2 Complex Polynomial Transform Algorithms.- A.1.3 Round-off Error Analysis.- A.2 Computation of Multidimensional Convolutions by a Combination of the Direct and Inverse Polynomial Transform Methods.- A.2.1 Computation of Convolutions by DFT Polynomial Transform Algorithms.- A.2.2 Convolution Algorithms Based on Polynomial Transforms and Permutations.- A.3 Computation of Multidimensional Discrete Cosine Transforms by Polynomial Transforms.- A.3.1 Computation of Direct Multidimensional DCT's.- A.3.2 Computation of Inverse Multidimensional DCT's.- Appendix B Short Polynomial Product Algorithms.- Problems.- References.
Series Title: Springer series in information sciences, 2.
Responsibility: Henri J. Nussbaumer.
More information:

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/75166003> # Fast fourier transform and convolution algorithms
    a schema:Book, schema:CreativeWork ;
   library:oclcnum "75166003" ;
   library:placeOfPublication <http://dbpedia.org/resource/New_York_City> ; # New York
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/22617914#Place/berlin> ; # Berlin
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/22617914#Place/hong_kong> ; # Hong Kong
   library:placeOfPublication <http://dbpedia.org/resource/London> ; # London
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/22617914#Place/heidelberg> ; # Heidelberg
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/22617914#Place/paris> ; # Paris
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/22617914#Place/tokyo> ; # Tokyo
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/gw> ;
   schema:about <http://experiment.worldcat.org/entity/work/data/22617914#Topic/algorithmus> ; # Algorithmus
   schema:about <http://experiment.worldcat.org/entity/work/data/22617914#Topic/digitalfilter> ; # Digitalfilter
   schema:about <http://experiment.worldcat.org/entity/work/data/22617914#Topic/faltung_mathematik_algorithmus> ; # Faltung --Algorithmus
   schema:about <http://experiment.worldcat.org/entity/work/data/22617914#Topic/convolutions_mathematics> ; # Convolutions (Mathematics)
   schema:about <http://experiment.worldcat.org/entity/work/data/22617914#Topic/faltung_mathematik> ; # Faltung (Mathematik)
   schema:about <http://experiment.worldcat.org/entity/work/data/22617914#Topic/digitalfilter_algorithmus> ; # Digitalfilter--Algorithmus
   schema:about <http://experiment.worldcat.org/entity/work/data/22617914#Topic/schneller_faltungsalgorithmus> ; # Schneller Faltungsalgorithmus
   schema:about <http://experiment.worldcat.org/entity/work/data/22617914#Topic/transformations_mathematics> ; # Transformations (Mathematics)
   schema:about <http://experiment.worldcat.org/entity/work/data/22617914#Topic/schnelle_fourier_transformation_algorithmus> ; # Schnelle Fourier-Transformation--Algorithmus
   schema:about <http://experiment.worldcat.org/entity/work/data/22617914#Topic/fourier_transformations> ; # Fourier transformations
   schema:about <http://experiment.worldcat.org/entity/work/data/22617914#Topic/schnelle_fourier_transformation> ; # Schnelle Fourier-Transformation
   schema:bookEdition "2., corr. and updated ed., 2. print." ;
   schema:bookFormat bgn:PrintBook ;
   schema:creator <http://experiment.worldcat.org/entity/work/data/22617914#Person/nussbaumer_henri_j> ; # Henri J. Nussbaumer
   schema:datePublished "1990" ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/22617914> ;
   schema:inLanguage "de" ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/22617914#Series/springer_series_in_information_sciences> ; # Springer series in information sciences ;
   schema:name "Fast fourier transform and convolution algorithms"@de ;
   schema:productID "75166003" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/75166003#PublicationEvent/berlin_heidelberg_new_york_london_paris_tokyo_hong_kong_springer_1990> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/22617914#Agent/springer> ; # Springer
   schema:workExample <http://worldcat.org/isbn/9783540118251> ;
   schema:workExample <http://worldcat.org/isbn/9780387118253> ;
   umbel:isLike <http://d-nb.info/820831247> ;
   umbel:isLike <http://d-nb.info/901007951> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/75166003> ;
    .


Related Entities

<http://dbpedia.org/resource/London> # London
    a schema:Place ;
   schema:name "London" ;
    .

<http://dbpedia.org/resource/New_York_City> # New York
    a schema:Place ;
   schema:name "New York" ;
    .

<http://experiment.worldcat.org/entity/work/data/22617914#Person/nussbaumer_henri_j> # Henri J. Nussbaumer
    a schema:Person ;
   schema:familyName "Nussbaumer" ;
   schema:givenName "Henri J." ;
   schema:name "Henri J. Nussbaumer" ;
    .

<http://experiment.worldcat.org/entity/work/data/22617914#Series/springer_series_in_information_sciences> # Springer series in information sciences ;
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/75166003> ; # Fast fourier transform and convolution algorithms
   schema:name "Springer series in information sciences ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/22617914#Topic/convolutions_mathematics> # Convolutions (Mathematics)
    a schema:Intangible ;
   schema:name "Convolutions (Mathematics)"@de ;
    .

<http://experiment.worldcat.org/entity/work/data/22617914#Topic/digitalfilter_algorithmus> # Digitalfilter--Algorithmus
    a schema:Intangible ;
   schema:name "Digitalfilter--Algorithmus"@de ;
    .

<http://experiment.worldcat.org/entity/work/data/22617914#Topic/faltung_mathematik> # Faltung (Mathematik)
    a schema:Intangible ;
   schema:name "Faltung (Mathematik)"@de ;
    .

<http://experiment.worldcat.org/entity/work/data/22617914#Topic/fourier_transformations> # Fourier transformations
    a schema:Intangible ;
   schema:name "Fourier transformations"@de ;
    .

<http://experiment.worldcat.org/entity/work/data/22617914#Topic/schnelle_fourier_transformation> # Schnelle Fourier-Transformation
    a schema:Intangible ;
   schema:name "Schnelle Fourier-Transformation"@de ;
    .

<http://experiment.worldcat.org/entity/work/data/22617914#Topic/schnelle_fourier_transformation_algorithmus> # Schnelle Fourier-Transformation--Algorithmus
    a schema:Intangible ;
   schema:name "Schnelle Fourier-Transformation--Algorithmus"@de ;
    .

<http://experiment.worldcat.org/entity/work/data/22617914#Topic/schneller_faltungsalgorithmus> # Schneller Faltungsalgorithmus
    a schema:Intangible ;
   schema:name "Schneller Faltungsalgorithmus"@de ;
    .

<http://experiment.worldcat.org/entity/work/data/22617914#Topic/transformations_mathematics> # Transformations (Mathematics)
    a schema:Intangible ;
   schema:name "Transformations (Mathematics)"@de ;
    .

<http://worldcat.org/isbn/9780387118253>
    a schema:ProductModel ;
   schema:isbn "038711825X" ;
   schema:isbn "9780387118253" ;
    .

<http://worldcat.org/isbn/9783540118251>
    a schema:ProductModel ;
   schema:isbn "354011825X" ;
   schema:isbn "9783540118251" ;
    .

<http://www.worldcat.org/title/-/oclc/75166003#PublicationEvent/berlin_heidelberg_new_york_london_paris_tokyo_hong_kong_springer_1990>
    a schema:PublicationEvent ;
   schema:location <http://experiment.worldcat.org/entity/work/data/22617914#Place/tokyo> ; # Tokyo
   schema:location <http://experiment.worldcat.org/entity/work/data/22617914#Place/paris> ; # Paris
   schema:location <http://experiment.worldcat.org/entity/work/data/22617914#Place/hong_kong> ; # Hong Kong
   schema:location <http://experiment.worldcat.org/entity/work/data/22617914#Place/berlin> ; # Berlin
   schema:location <http://dbpedia.org/resource/London> ; # London
   schema:location <http://dbpedia.org/resource/New_York_City> ; # New York
   schema:location <http://experiment.worldcat.org/entity/work/data/22617914#Place/heidelberg> ; # Heidelberg
   schema:organizer <http://experiment.worldcat.org/entity/work/data/22617914#Agent/springer> ; # Springer
   schema:startDate "1990" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.