skip to content
Feedback control of dynamic systems Preview this item
ClosePreview this item
Checking...

Feedback control of dynamic systems

Author: Gene F Franklin; J David Powell; Abbas Emami-Naeini
Publisher: Boston : Pearson, [2015]
Edition/Format:   Print book : English : Seventh editionView all editions and formats
Summary:
Feedback Control of Dynamic Systems covers the material that every engineer, and most scientists and prospective managers, needs to know about feedback control-including concepts like stability, tracking, and robustness. Each chapter presents the fundamentals along with comprehensive, worked-out examples, all within a real-world context and with historical background information. The authors also provide case  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: Gene F Franklin; J David Powell; Abbas Emami-Naeini
ISBN: 9780133496598 0133496597
OCLC Number: 869825370
Description: xx, 860 pages : illustrations ; 24 cm
Contents: Machine generated contents note: 1. An Overview and Brief History of Feedback Control --
A Perspective on Feedback Control --
Chapter Overview --
1.1.A Simple Feedback System --
1.2.A First Analysis of Feedback --
1.3. Feedback System Fundamentals --
1.4.A Brief History --
1.5. An Overview of the Book --
Summary --
Review Questions --
Problems --
2. Dynamic Models --
A Perspective on Dynamic Models --
Chapter Overview --
2.1. Dynamics of Mechanical Systems --
2.1.1. Translational Motion --
2.1.2. Rotational Motion --
2.1.3.Combined Rotation and Translation --
2.1.4.Complex Mechanical Systems (W)** --
2.1.5. Distributed Parameter Systems --
2.1.6. Summary: Developing Equations of Motion for Rigid Bodies --
2.2. Models of Electric Circuits --
2.3. Models of Electromechanical Systems --
2.3.1. Loudspeakers --
2.3.2. Motors --
2.3.3. Gears --
2.4. Heat and Fluid-Flow Models --
2.4.1. Heat Flow --
2.4.2. Incompressible Fluid Flow --
2.5. Historical Perspective --
Summary --
Review Questions. Note continued: Problems --
3. Dynamic Response --
A Perspective on System Response --
Chapter Overview --
3.1. Review of Laplace Transforms --
3.1.1. Response by Convolution --
3.1.2. Transfer Functions and Frequency Response --
3.1.3. The L_ Laplace Transform --
3.1.4. Properties of Laplace Transforms --
3.1.5. Inverse Laplace Transform by Partial-Fraction Expansion --
3.1.6. The Final Value Theorem --
3.1.7. Using Laplace Transforms to Solve Differential Equations --
3.1.8. Poles and Zeros --
3.1.9. Linear System Analysis Using Matlab® --
3.2. System Modeling Diagrams --
3.2.1. The Block Diagram --
3.2.2. Block-Diagram Reduction Using Matlab --
3.2.3. Mason's Rule and the Signal Flow Graph (W) --
3.3. Effect of Pole Locations --
3.4. Time-Domain Specifications --
3.4.1. Rise Time --
3.4.2. Overshoot and Peak Time --
3.4.3. Settling Time --
3.5. Effects of Zeros and Additional Poles --
3.6. Stability --
3.6.1. Bounded Input-Bounded Output Stability --
3.6.2. Stability of LTI Systems. Note continued: 3.6.3. Routh's Stability Criterion --
3.7. Obtaining Models from Experimental Data: System Identification (W) --
3.8. Amplitude and Time Scaling (W) --
3.9. Historical Perspective --
Summary --
Review Questions --
Problems --
4.A First Analysis of Feedback --
A Perspective on the Analysis of Feedback --
Chapter Overview --
4.1. The Basic Equations of Control --
4.1.1. Stability --
4.1.2. Tracking --
4.1.3. Regulation --
4.1.4. Sensitivity --
4.2. Control of Steady-State Error to Polynomial Inputs: System Type --
4.2.1. System Type for Tracking --
4.2.2. System Type for Regulation and Disturbance Rejection --
4.3. The Three-Term Controller: PID Control --
4.3.1. Proportional Control (P) --
4.3.2. Integral Control (I) --
4.3.3. Derivative Control (D) --
4.3.4. Proportional Plus Integral Control (PI) --
4.3.5. PID Control --
4.3.6. Ziegler --
Nichols Tuning of the PID --
Controller --
4.4. Feedforward Control by Plant Model Inversion --
4.5. Introduction to Digital Control (W). Note continued: 4.6. Sensitivity of Time Response to Parameter Change (W) --
4.7. Historical Perspective --
Summary --
Review Questions --
Problems --
5. The Root-Locus Design Method --
A Perspective on the Root-Locus Design Method --
Chapter Overview --
5.1. Root Locus of a Basic Feedback System --
5.2. Guidelines for Determining a Root Locus --
5.2.1. Rules for Determining a Positive (180°) --
Root Locus --
5.2.2. Summary of the Rules for Determining a Root Locus --
5.2.3. Selecting the Parameter Value --
5.3. Selected Illustrative Root Loci --
5.4. Design Using Dynamic Compensation --
5.4.1. Design Using Lead Compensation --
5.4.2. Design Using Lag Compensation --
5.4.3. Design Using Notch Compensation --
5.4.4. Analog and Digital Implementations (W) --
5.5.A Design Example Using the Root Locus --
5.6. Extensions of the Root-Locus Method --
5.6.1. Rules for Plotting a Negative (0°) Root Locus --
5.6.2. Consideration of Two Parameters --
5.6.3. Time Delay (W). Note continued: 5.7. Historical Perspective --
Summary --
Review Questions --
Problems --
6. The Frequency-Response Design Method --
A Perspective on the Frequency-Response Design Method --
Chapter Overview --
6.1. Frequency Response --
6.1.1. Bode Plot Techniques --
6.1.2. Steady-State Errors --
6.2. Neutral Stability --
6.3. The Nyquist Stability Criterion --
6.3.1. The Argument Principle --
6.3.2. Application of The Argument Principle to Control Design --
6.4. Stability Margins --
6.5. Bode's Gain --
Phase Relationship --
6.6. Closed-Loop Frequency Response --
6.7.Compensation --
6.7.1. PD Compensation --
6.7.2. Lead Compensation (W) --
6.7.3. PI Compensation --
6.7.4. Lag Compensation --
6.7.5. PID Compensation --
6.7.6. Design Considerations --
6.7.7. Specifications in Terms of the Sensitivity Function --
6.7.8. Limitations on Design in Terms of the Sensitivity Function --
6.8. Time Delay --
6.8.1. Time Delay via the Nyquist Diagram (W) --
6.9. Alternative Presentation of Data. Note continued: 6.9.1. Nichols Chart --
6.9.2. The Inverse Nyquist Diagram (W) --
6.10. Historical Perspective --
Summary --
Review Questions --
Problems --
7. State-Space Design --
A Perspective on State-Space Design --
Chapter Overview --
7.1. Advantages of State-Space --
7.2. System Description in State-Space --
7.3. Block Diagrams and State-Space --
7.4. Analysis of the State Equations --
7.4.1. Block Diagrams and Canonical Forms --
7.4.2. Dynamic Response from the State --
Equations --
7.5. Control-Law Design for Full-State Feedback --
7.5.1. Finding the Control Law --
7.5.2. Introducing the Reference Input with Full-State Feedback --
7.6. Selection of Pole Locations for Good Design --
7.6.1. Dominant Second-Order Poles --
7.6.2. Symmetric Root Locus (SRL) --
7.6.3.Comments on the Methods --
7.7. Estimator Design --
7.7.1. Full-Order Estimators --
7.7.2. Reduced-Order Estimators --
7.7.3. Estimator Pole Selection --
7.8.Compensator Design: Combined Control Law and Estimator (W). Note continued: 7.9. Introduction of the Reference Input with the Estimator (W) --
7.9.1. General Structure for the Reference Input --
7.9.2. Selecting the Gain --
7.10. Integral Control and Robust Tracking --
7.10.1. Integral Control --
7.10.2. Robust Tracking Control: The Error-Space Approach --
7.10.3. Model-Following Design --
7.10.4. The Extended Estimator --
7.11. Loop Transfer Recovery --
7.12. Direct Design with Rational Transfer Functions --
7.13. Design for Systems with Pure Time Delay --
7.14. Solution of State Equations (W) --
7.15. Historical Perspective --
Summary --
Review Questions --
Problems --
8. Digital Control --
A Perspective on Digital Control --
Chapter Overview --
8.1. Digitization --
8.2. Dynamic Analysis of Discrete Systems --
8.2.1.z-Transform --
8.2.2.z-Transform Inversion --
8.2.3. Relationship Between s and z --
8.2.4. Final Value Theorem --
8.3. Design Using Discrete Equivalents --
8.3.1. Tustin's Method --
8.3.2. Zero-Order Hold (ZOH) Method. Note continued: 8.3.3. Matched Pole-Zero (MPZ) Method --
8.3.4. Modified Matched Pole --
Zero (MMPZ)> Method --
8.3.5.Comparison of Digital Approximation Methods --
8.3.6. Applicability Limits of the Discrete Equivalent Design Method --
8.4. Hardware Characteristics --
8.4.1. Analog-to-Digital (A/D) Converters --
8.4.2. Digital-to-Analog Converters --
8.4.3. Anti-Alias Prefilters --
8.4.4. The Computer --
8.5. Sample-Rate Selection --
8.5.1. Tracking Effectiveness --
8.5.2. Disturbance Rejection --
8.5.3. Effect of Anti-Alias Prefilter --
8.5.4. Asynchronous Sampling --
8.6. Discrete Design --
8.6.1. Analysis Tools --
8.6.2. Feedback Properties --
8.6.3. Discrete Design Example --
8.6.4. Discrete Analysis of Designs --
8.7. Discrete State-Space Design Methods (W) --
8.8. Historical Perspective --
Summary --
Review Questions --
Problems --
9. Nonlinear Systems --
A Perspective on Nonlinear Systems --
Chapter Overview --
9.1. Introduction and Motivation: Why Study Nonlinear Systems? Note continued: 9.2. Analysis by Linearization --
9.2.1. Linearization by Small-Signal Analysis --
9.2.2. Linearization by Nonlinear Feedback --
9.2.3. Linearization by Inverse Nonlinearity --
9.3. Equivalent Gain Analysis Using the Root Locus --
9.3.1. Integrator Antiwindup --
9.4. Equivalent Gain Analysis Using Frequency Response: Describing Functions --
9.4.1. Stability Analysis Using Describing Functions --
9.5. Analysis and Design Based on Stability --
9.5.1. The Phase Plane --
9.5.2. Lyapunov Stability Analysis --
9.5.3. The Circle Criterion --
9.6. Historical Perspective --
Summary --
Review Questions --
Problems --
10. Control System Design: Principles and Case Studies --
A Perspective on Design Principles --
Chapter Overview --
10.1. An Outline of Control Systems --
Design --
10.2. Design of a Satellite's Attitude Control --
10.3. Lateral and Longitudinal Control of a Boeing 747 --
10.3.1. Yaw Damper --
10.3.2. Altitude-Hold Autopilot. Note continued: 10.4. Control of the Fuel-Air Ratio in an Automotive Engine --
10.5. Control of the Read/Write Head Assembly of a Hard Disk --
10.6. Control of RTP Systems in Semiconductor Wafer Manufacturing --
10.7. Chemotaxis or How E. Coli Swims Away from Trouble --
10.8. Historical Perspective --
Summary --
Review Questions --
Problems --
Appendix A Laplace Transforms --
A.1. The L_ Laplace Transform --
A.1.1. Properties of Laplace Transforms --
A.1.2. Inverse Laplace Transform by Partial-Fraction Expansion --
A.1.3. The Initial Value Theorem --
A.1.4. Final Value Theorem --
Appendix B Solutions to the Review Questions --
Appendix C Matlab Commands.
Responsibility: Gene F. Franklin, Stanford University, J. David Powell, Stanford University, Abbas Emami-Naeini, SC Solutions, Inc.

Abstract:

Feedback Control of Dynamic Systems covers the material that every engineer, and most scientists and prospective managers, needs to know about feedback control-including concepts like stability, tracking, and robustness. Each chapter presents the fundamentals along with comprehensive, worked-out examples, all within a real-world context and with historical background information. The authors also provide case studies with close integration of MATLAB throughout.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Related Subjects:(1)

User lists with this item (9)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/869825370> # Feedback control of dynamic systems
    a schema:Book, schema:CreativeWork ;
    library:oclcnum "869825370" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/mau> ;
    schema:about <http://dewey.info/class/629.83/e23/> ;
    schema:about <http://id.worldcat.org/fast/922447> ; # Feedback control systems
    schema:author <http://viaf.org/viaf/75282857> ; # Gene F. Franklin
    schema:author <http://viaf.org/viaf/77744504> ; # Abbas Emami-Naeini
    schema:author <http://viaf.org/viaf/107814090> ; # J. David Powell
    schema:bookEdition "Seventh edition." ;
    schema:bookFormat bgn:PrintBook ;
    schema:datePublished "2015" ;
    schema:description "Note continued: 3.6.3. Routh's Stability Criterion -- 3.7. Obtaining Models from Experimental Data: System Identification (W) -- 3.8. Amplitude and Time Scaling (W) -- 3.9. Historical Perspective -- Summary -- Review Questions -- Problems -- 4.A First Analysis of Feedback -- A Perspective on the Analysis of Feedback -- Chapter Overview -- 4.1. The Basic Equations of Control -- 4.1.1. Stability -- 4.1.2. Tracking -- 4.1.3. Regulation -- 4.1.4. Sensitivity -- 4.2. Control of Steady-State Error to Polynomial Inputs: System Type -- 4.2.1. System Type for Tracking -- 4.2.2. System Type for Regulation and Disturbance Rejection -- 4.3. The Three-Term Controller: PID Control -- 4.3.1. Proportional Control (P) -- 4.3.2. Integral Control (I) -- 4.3.3. Derivative Control (D) -- 4.3.4. Proportional Plus Integral Control (PI) -- 4.3.5. PID Control -- 4.3.6. Ziegler -- Nichols Tuning of the PID -- Controller -- 4.4. Feedforward Control by Plant Model Inversion -- 4.5. Introduction to Digital Control (W)."@en ;
    schema:description "Note continued: 5.7. Historical Perspective -- Summary -- Review Questions -- Problems -- 6. The Frequency-Response Design Method -- A Perspective on the Frequency-Response Design Method -- Chapter Overview -- 6.1. Frequency Response -- 6.1.1. Bode Plot Techniques -- 6.1.2. Steady-State Errors -- 6.2. Neutral Stability -- 6.3. The Nyquist Stability Criterion -- 6.3.1. The Argument Principle -- 6.3.2. Application of The Argument Principle to Control Design -- 6.4. Stability Margins -- 6.5. Bode's Gain -- Phase Relationship -- 6.6. Closed-Loop Frequency Response -- 6.7.Compensation -- 6.7.1. PD Compensation -- 6.7.2. Lead Compensation (W) -- 6.7.3. PI Compensation -- 6.7.4. Lag Compensation -- 6.7.5. PID Compensation -- 6.7.6. Design Considerations -- 6.7.7. Specifications in Terms of the Sensitivity Function -- 6.7.8. Limitations on Design in Terms of the Sensitivity Function -- 6.8. Time Delay -- 6.8.1. Time Delay via the Nyquist Diagram (W) -- 6.9. Alternative Presentation of Data."@en ;
    schema:description "Machine generated contents note: 1. An Overview and Brief History of Feedback Control -- A Perspective on Feedback Control -- Chapter Overview -- 1.1.A Simple Feedback System -- 1.2.A First Analysis of Feedback -- 1.3. Feedback System Fundamentals -- 1.4.A Brief History -- 1.5. An Overview of the Book -- Summary -- Review Questions -- Problems -- 2. Dynamic Models -- A Perspective on Dynamic Models -- Chapter Overview -- 2.1. Dynamics of Mechanical Systems -- 2.1.1. Translational Motion -- 2.1.2. Rotational Motion -- 2.1.3.Combined Rotation and Translation -- 2.1.4.Complex Mechanical Systems (W)** -- 2.1.5. Distributed Parameter Systems -- 2.1.6. Summary: Developing Equations of Motion for Rigid Bodies -- 2.2. Models of Electric Circuits -- 2.3. Models of Electromechanical Systems -- 2.3.1. Loudspeakers -- 2.3.2. Motors -- 2.3.3. Gears -- 2.4. Heat and Fluid-Flow Models -- 2.4.1. Heat Flow -- 2.4.2. Incompressible Fluid Flow -- 2.5. Historical Perspective -- Summary -- Review Questions."@en ;
    schema:description "Note continued: Problems -- 3. Dynamic Response -- A Perspective on System Response -- Chapter Overview -- 3.1. Review of Laplace Transforms -- 3.1.1. Response by Convolution -- 3.1.2. Transfer Functions and Frequency Response -- 3.1.3. The L_ Laplace Transform -- 3.1.4. Properties of Laplace Transforms -- 3.1.5. Inverse Laplace Transform by Partial-Fraction Expansion -- 3.1.6. The Final Value Theorem -- 3.1.7. Using Laplace Transforms to Solve Differential Equations -- 3.1.8. Poles and Zeros -- 3.1.9. Linear System Analysis Using Matlab® -- 3.2. System Modeling Diagrams -- 3.2.1. The Block Diagram -- 3.2.2. Block-Diagram Reduction Using Matlab -- 3.2.3. Mason's Rule and the Signal Flow Graph (W) -- 3.3. Effect of Pole Locations -- 3.4. Time-Domain Specifications -- 3.4.1. Rise Time -- 3.4.2. Overshoot and Peak Time -- 3.4.3. Settling Time -- 3.5. Effects of Zeros and Additional Poles -- 3.6. Stability -- 3.6.1. Bounded Input-Bounded Output Stability -- 3.6.2. Stability of LTI Systems."@en ;
    schema:description "Feedback Control of Dynamic Systems covers the material that every engineer, and most scientists and prospective managers, needs to know about feedback control-including concepts like stability, tracking, and robustness. Each chapter presents the fundamentals along with comprehensive, worked-out examples, all within a real-world context and with historical background information. The authors also provide case studies with close integration of MATLAB throughout."@en ;
    schema:description "Note continued: 9.2. Analysis by Linearization -- 9.2.1. Linearization by Small-Signal Analysis -- 9.2.2. Linearization by Nonlinear Feedback -- 9.2.3. Linearization by Inverse Nonlinearity -- 9.3. Equivalent Gain Analysis Using the Root Locus -- 9.3.1. Integrator Antiwindup -- 9.4. Equivalent Gain Analysis Using Frequency Response: Describing Functions -- 9.4.1. Stability Analysis Using Describing Functions -- 9.5. Analysis and Design Based on Stability -- 9.5.1. The Phase Plane -- 9.5.2. Lyapunov Stability Analysis -- 9.5.3. The Circle Criterion -- 9.6. Historical Perspective -- Summary -- Review Questions -- Problems -- 10. Control System Design: Principles and Case Studies -- A Perspective on Design Principles -- Chapter Overview -- 10.1. An Outline of Control Systems -- Design -- 10.2. Design of a Satellite's Attitude Control -- 10.3. Lateral and Longitudinal Control of a Boeing 747 -- 10.3.1. Yaw Damper -- 10.3.2. Altitude-Hold Autopilot."@en ;
    schema:description "Note continued: 6.9.1. Nichols Chart -- 6.9.2. The Inverse Nyquist Diagram (W) -- 6.10. Historical Perspective -- Summary -- Review Questions -- Problems -- 7. State-Space Design -- A Perspective on State-Space Design -- Chapter Overview -- 7.1. Advantages of State-Space -- 7.2. System Description in State-Space -- 7.3. Block Diagrams and State-Space -- 7.4. Analysis of the State Equations -- 7.4.1. Block Diagrams and Canonical Forms -- 7.4.2. Dynamic Response from the State -- Equations -- 7.5. Control-Law Design for Full-State Feedback -- 7.5.1. Finding the Control Law -- 7.5.2. Introducing the Reference Input with Full-State Feedback -- 7.6. Selection of Pole Locations for Good Design -- 7.6.1. Dominant Second-Order Poles -- 7.6.2. Symmetric Root Locus (SRL) -- 7.6.3.Comments on the Methods -- 7.7. Estimator Design -- 7.7.1. Full-Order Estimators -- 7.7.2. Reduced-Order Estimators -- 7.7.3. Estimator Pole Selection -- 7.8.Compensator Design: Combined Control Law and Estimator (W)."@en ;
    schema:description "Note continued: 10.4. Control of the Fuel-Air Ratio in an Automotive Engine -- 10.5. Control of the Read/Write Head Assembly of a Hard Disk -- 10.6. Control of RTP Systems in Semiconductor Wafer Manufacturing -- 10.7. Chemotaxis or How E. Coli Swims Away from Trouble -- 10.8. Historical Perspective -- Summary -- Review Questions -- Problems -- Appendix A Laplace Transforms -- A.1. The L_ Laplace Transform -- A.1.1. Properties of Laplace Transforms -- A.1.2. Inverse Laplace Transform by Partial-Fraction Expansion -- A.1.3. The Initial Value Theorem -- A.1.4. Final Value Theorem -- Appendix B Solutions to the Review Questions -- Appendix C Matlab Commands."@en ;
    schema:description "Note continued: 7.9. Introduction of the Reference Input with the Estimator (W) -- 7.9.1. General Structure for the Reference Input -- 7.9.2. Selecting the Gain -- 7.10. Integral Control and Robust Tracking -- 7.10.1. Integral Control -- 7.10.2. Robust Tracking Control: The Error-Space Approach -- 7.10.3. Model-Following Design -- 7.10.4. The Extended Estimator -- 7.11. Loop Transfer Recovery -- 7.12. Direct Design with Rational Transfer Functions -- 7.13. Design for Systems with Pure Time Delay -- 7.14. Solution of State Equations (W) -- 7.15. Historical Perspective -- Summary -- Review Questions -- Problems -- 8. Digital Control -- A Perspective on Digital Control -- Chapter Overview -- 8.1. Digitization -- 8.2. Dynamic Analysis of Discrete Systems -- 8.2.1.z-Transform -- 8.2.2.z-Transform Inversion -- 8.2.3. Relationship Between s and z -- 8.2.4. Final Value Theorem -- 8.3. Design Using Discrete Equivalents -- 8.3.1. Tustin's Method -- 8.3.2. Zero-Order Hold (ZOH) Method."@en ;
    schema:description "Note continued: 4.6. Sensitivity of Time Response to Parameter Change (W) -- 4.7. Historical Perspective -- Summary -- Review Questions -- Problems -- 5. The Root-Locus Design Method -- A Perspective on the Root-Locus Design Method -- Chapter Overview -- 5.1. Root Locus of a Basic Feedback System -- 5.2. Guidelines for Determining a Root Locus -- 5.2.1. Rules for Determining a Positive (180°) -- Root Locus -- 5.2.2. Summary of the Rules for Determining a Root Locus -- 5.2.3. Selecting the Parameter Value -- 5.3. Selected Illustrative Root Loci -- 5.4. Design Using Dynamic Compensation -- 5.4.1. Design Using Lead Compensation -- 5.4.2. Design Using Lag Compensation -- 5.4.3. Design Using Notch Compensation -- 5.4.4. Analog and Digital Implementations (W) -- 5.5.A Design Example Using the Root Locus -- 5.6. Extensions of the Root-Locus Method -- 5.6.1. Rules for Plotting a Negative (0°) Root Locus -- 5.6.2. Consideration of Two Parameters -- 5.6.3. Time Delay (W)."@en ;
    schema:description "Note continued: 8.3.3. Matched Pole-Zero (MPZ) Method -- 8.3.4. Modified Matched Pole -- Zero (MMPZ)> Method -- 8.3.5.Comparison of Digital Approximation Methods -- 8.3.6. Applicability Limits of the Discrete Equivalent Design Method -- 8.4. Hardware Characteristics -- 8.4.1. Analog-to-Digital (A/D) Converters -- 8.4.2. Digital-to-Analog Converters -- 8.4.3. Anti-Alias Prefilters -- 8.4.4. The Computer -- 8.5. Sample-Rate Selection -- 8.5.1. Tracking Effectiveness -- 8.5.2. Disturbance Rejection -- 8.5.3. Effect of Anti-Alias Prefilter -- 8.5.4. Asynchronous Sampling -- 8.6. Discrete Design -- 8.6.1. Analysis Tools -- 8.6.2. Feedback Properties -- 8.6.3. Discrete Design Example -- 8.6.4. Discrete Analysis of Designs -- 8.7. Discrete State-Space Design Methods (W) -- 8.8. Historical Perspective -- Summary -- Review Questions -- Problems -- 9. Nonlinear Systems -- A Perspective on Nonlinear Systems -- Chapter Overview -- 9.1. Introduction and Motivation: Why Study Nonlinear Systems?"@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/328559> ;
    schema:inLanguage "en" ;
    schema:name "Feedback control of dynamic systems"@en ;
    schema:productID "869825370" ;
    schema:workExample <http://worldcat.org/isbn/9780133496598> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/869825370> ;
    .


Related Entities

<http://id.worldcat.org/fast/922447> # Feedback control systems
    a schema:Intangible ;
    schema:name "Feedback control systems"@en ;
    .

<http://viaf.org/viaf/107814090> # J. David Powell
    a schema:Person ;
    schema:birthDate "1938" ;
    schema:familyName "Powell" ;
    schema:givenName "J. David" ;
    schema:name "J. David Powell" ;
    .

<http://viaf.org/viaf/75282857> # Gene F. Franklin
    a schema:Person ;
    schema:familyName "Franklin" ;
    schema:givenName "Gene F." ;
    schema:name "Gene F. Franklin" ;
    .

<http://viaf.org/viaf/77744504> # Abbas Emami-Naeini
    a schema:Person ;
    schema:familyName "Emami-Naeini" ;
    schema:givenName "Abbas" ;
    schema:name "Abbas Emami-Naeini" ;
    .

<http://worldcat.org/isbn/9780133496598>
    a schema:ProductModel ;
    schema:isbn "0133496597" ;
    schema:isbn "9780133496598" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.