omitir hasta el contenido
Filtered floer and symplectic homology via Gromov-Witten theory Ver este material de antemano
CerrarVer este material de antemano
Chequeando…

Filtered floer and symplectic homology via Gromov-Witten theory

Autor: Luís Miguel Pereira De Matos Geraldes Diogo; Y Eliashberg; Søren Galatius; Eleny Ionel; Stanford University. Department of Mathematics.
Editorial: 2012.
Disertación: Thesis (Ph. D.)--Stanford University, 2012.
Edición/Formato:   Tesis/disertación : Documento : Tesis de maestría/doctorado : Libro-e   Archivo de computadora : Inglés (eng)
Base de datos:WorldCat
Resumen:
We describe a procedure for computing Floer and symplectic homology groups, with action filtration and algebraic operations, in a class of examples. Namely, we consider closed monotone symplectic manifolds with smooth symplectic divisors, Poincaré dual to a positive multiple of the symplectic form. We express the Floer homology of the manifold and the symplectic homology of the complement of the divisor, for a  Leer más
Calificación:

(todavía no calificado) 0 con reseñas - Ser el primero.

 

Encontrar un ejemplar en línea

Enlaces a este material

Encontrar un ejemplar en la biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que tienen este material…

Detalles

Tipo de material: Documento, Tesis de maestría/doctorado, Recurso en Internet
Tipo de documento: Recurso en Internet, Archivo de computadora
Todos autores / colaboradores: Luís Miguel Pereira De Matos Geraldes Diogo; Y Eliashberg; Søren Galatius; Eleny Ionel; Stanford University. Department of Mathematics.
Número OCLC: 809038246
Notas: Submitted to the Department of Mathematics.
Descripción: 1 online resource.
Responsabilidad: Luís Miguel Pereira de Matos Geraldes Diogo.

Resumen:

We describe a procedure for computing Floer and symplectic homology groups, with action filtration and algebraic operations, in a class of examples. Namely, we consider closed monotone symplectic manifolds with smooth symplectic divisors, Poincaré dual to a positive multiple of the symplectic form. We express the Floer homology of the manifold and the symplectic homology of the complement of the divisor, for a special class of Hamiltonians, in terms of absolute and relative Gromov--Witten invariants, and some additional Morse-theoretic information. As an application, we compute the symplectic homology rings of cotangent bundles of spheres, and compare our results with an earlier computation in string topology.

Reseñas

Reseñas contribuidas por usuarios
Recuperando reseñas de GoodReads…
Recuperando reseñas de DOGObooks…

Etiquetas

Ser el primero.
Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Datos enlazados


<http://www.worldcat.org/oclc/809038246>
library:oclcnum"809038246"
owl:sameAs<info:oclcnum/809038246>
rdf:typej.1:Thesis
rdf:typej.1:Web_document
rdf:typeschema:Book
schema:contributor
schema:contributor
schema:contributor
<http://viaf.org/viaf/139860406>
rdf:typeschema:Organization
schema:name"Stanford University. Department of Mathematics."
schema:contributor
schema:creator
schema:datePublished"2012"
schema:description"We describe a procedure for computing Floer and symplectic homology groups, with action filtration and algebraic operations, in a class of examples. Namely, we consider closed monotone symplectic manifolds with smooth symplectic divisors, Poincaré dual to a positive multiple of the symplectic form. We express the Floer homology of the manifold and the symplectic homology of the complement of the divisor, for a special class of Hamiltonians, in terms of absolute and relative Gromov--Witten invariants, and some additional Morse-theoretic information. As an application, we compute the symplectic homology rings of cotangent bundles of spheres, and compare our results with an earlier computation in string topology."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1166051538>
schema:inLanguage"en"
schema:name"Filtered floer and symplectic homology via Gromov-Witten theory"@en
schema:url<http://purl.stanford.edu/wt500bq8486>
schema:url

Content-negotiable representations

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.