passa ai contenuti
Filtered floer and symplectic homology via Gromov-Witten theory Anteprima di questo documento
ChiudiAnteprima di questo documento
Stiamo controllando…

Filtered floer and symplectic homology via Gromov-Witten theory

Autore: Luís Miguel Pereira De Matos Geraldes Diogo; Y Eliashberg; Søren Galatius; Eleny Ionel; Stanford University. Department of Mathematics.
Editore: 2012.
Tesi: Thesis (Ph. D.)--Stanford University, 2012.
Edizione/Formato:   Tesi/dissertazione : Document : Thesis/dissertation : eBook   Computer File : English
Banca dati:WorldCat
Sommario:
We describe a procedure for computing Floer and symplectic homology groups, with action filtration and algebraic operations, in a class of examples. Namely, we consider closed monotone symplectic manifolds with smooth symplectic divisors, Poincaré dual to a positive multiple of the symplectic form. We express the Floer homology of the manifold and the symplectic homology of the complement of the divisor, for a  Per saperne di più…
Voto:

(non ancora votato) 0 con commenti - Diventa il primo.

 

Trova una copia online

Collegamenti a questo documento

Trova una copia in biblioteca

&AllPage.SpinnerRetrieving; Stiamo ricercando le biblioteche che possiedono questo documento…

Dettagli

Tipo materiale: Document, Thesis/dissertation, Risorsa internet
Tipo documento: Internet Resource, Computer File
Tutti gli autori / Collaboratori: Luís Miguel Pereira De Matos Geraldes Diogo; Y Eliashberg; Søren Galatius; Eleny Ionel; Stanford University. Department of Mathematics.
Numero OCLC: 809038246
Note: Submitted to the Department of Mathematics.
Descrizione: 1 online resource.
Responsabilità: Luís Miguel Pereira de Matos Geraldes Diogo.

Abstract:

We describe a procedure for computing Floer and symplectic homology groups, with action filtration and algebraic operations, in a class of examples. Namely, we consider closed monotone symplectic manifolds with smooth symplectic divisors, Poincaré dual to a positive multiple of the symplectic form. We express the Floer homology of the manifold and the symplectic homology of the complement of the divisor, for a special class of Hamiltonians, in terms of absolute and relative Gromov--Witten invariants, and some additional Morse-theoretic information. As an application, we compute the symplectic homology rings of cotangent bundles of spheres, and compare our results with an earlier computation in string topology.

Commenti

Commenti degli utenti
Recuperando commenti GoodReads…
Stiamo recuperando commenti DOGObooks

Etichette

Diventa il primo.
Conferma questa richiesta

Potresti aver già richiesto questo documento. Seleziona OK se si vuole procedere comunque con questa richiesta.

Dati collegati


<http://www.worldcat.org/oclc/809038246>
bgn:inSupportOf"Thesis (Ph. D.)--Stanford University, 2012."
library:oclcnum"809038246"
rdf:typeschema:MediaObject
rdf:typej.0:Web_document
rdf:typeschema:Book
rdf:typebgn:Thesis
rdf:valueUnknown value: dct
rdf:valueUnknown value: deg
schema:contributor
schema:contributor
schema:contributor
schema:contributor
<http://viaf.org/viaf/139860406>
rdf:typeschema:Organization
schema:name"Stanford University. Department of Mathematics."
schema:creator
schema:datePublished"2012"
schema:description"We describe a procedure for computing Floer and symplectic homology groups, with action filtration and algebraic operations, in a class of examples. Namely, we consider closed monotone symplectic manifolds with smooth symplectic divisors, Poincaré dual to a positive multiple of the symplectic form. We express the Floer homology of the manifold and the symplectic homology of the complement of the divisor, for a special class of Hamiltonians, in terms of absolute and relative Gromov--Witten invariants, and some additional Morse-theoretic information. As an application, we compute the symplectic homology rings of cotangent bundles of spheres, and compare our results with an earlier computation in string topology."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1166051538>
schema:inLanguage"en"
schema:name"Filtered floer and symplectic homology via Gromov-Witten theory"@en
schema:publication
schema:url<http://purl.stanford.edu/wt500bq8486>
wdrs:describedby

Content-negotiable representations

Chiudi finestra

Per favore entra in WorldCat 

Non hai un account? Puoi facilmente crearne uno gratuito.