passa ai contenuti
Filtered floer and symplectic homology via Gromov-Witten theory Anteprima di questo documento
ChiudiAnteprima di questo documento
Stiamo controllando…

Filtered floer and symplectic homology via Gromov-Witten theory

Autore: Luís Miguel Pereira De Matos Geraldes Diogo; Y Eliashberg; Søren Galatius; Eleny Ionel; Stanford University. Department of Mathematics.
Editore: 2012.
Tesi: Ph. D. Stanford University 2012
Edizione/Formato:   Tesi/dissertazione : Document : Thesis/dissertation : eBook   {1} {2} : English
Banca dati:WorldCat
Sommario:
We describe a procedure for computing Floer and symplectic homology groups, with action filtration and algebraic operations, in a class of examples. Namely, we consider closed monotone symplectic manifolds with smooth symplectic divisors, Poincaré dual to a positive multiple of the symplectic form. We express the Floer homology of the manifold and the symplectic homology of the complement of the divisor, for a  Per saperne di più…
Voto:

(non ancora votato) 0 con commenti - Diventa il primo.

 

Trova una copia online

Collegamenti a questo documento

Trova una copia in biblioteca

&AllPage.SpinnerRetrieving; Stiamo ricercando le biblioteche che possiedono questo documento…

Dettagli

Tipo materiale: Document, Thesis/dissertation, Risorsa internet
Tipo documento {1} {2}, {1} {2}
Tutti gli autori / Collaboratori: Luís Miguel Pereira De Matos Geraldes Diogo; Y Eliashberg; Søren Galatius; Eleny Ionel; Stanford University. Department of Mathematics.
Numero OCLC: 809038246
Note: Submitted to the Department of Mathematics.
Descrizione: 1 online resource
Responsabilità: Luís Miguel Pereira de Matos Geraldes Diogo.

Abstract:

We describe a procedure for computing Floer and symplectic homology groups, with action filtration and algebraic operations, in a class of examples. Namely, we consider closed monotone symplectic manifolds with smooth symplectic divisors, Poincaré dual to a positive multiple of the symplectic form. We express the Floer homology of the manifold and the symplectic homology of the complement of the divisor, for a special class of Hamiltonians, in terms of absolute and relative Gromov--Witten invariants, and some additional Morse-theoretic information. As an application, we compute the symplectic homology rings of cotangent bundles of spheres, and compare our results with an earlier computation in string topology.

Commenti

Commenti degli utenti
Recuperando commenti GoodReads…
Stiamo recuperando commenti DOGObooks

Etichette

Diventa il primo.
Conferma questa richiesta

Potresti aver già richiesto questo documento. Seleziona OK se si vuole procedere comunque con questa richiesta.

Dati collegati


Primary Entity

<http://www.worldcat.org/oclc/809038246> # Filtered floer and symplectic homology via Gromov-Witten theory
    a schema:MediaObject, pto:Web_document, schema:Book, bgn:Thesis, schema:CreativeWork ;
   bgn:inSupportOf "" ;
   library:oclcnum "809038246" ;
   schema:contributor <http://viaf.org/viaf/141137765> ; # Eleny Ionel
   schema:contributor <http://viaf.org/viaf/118446797> ; # Y. Eliashberg
   schema:contributor <http://viaf.org/viaf/164830929> ; # Søren Galatius
   schema:contributor <http://viaf.org/viaf/139860406> ; # Stanford University. Department of Mathematics.
   schema:creator <http://experiment.worldcat.org/entity/work/data/1166051538#Person/de_matos_geraldes_diogo_luis_miguel_pereira> ; # Luís Miguel Pereira De Matos Geraldes Diogo
   schema:datePublished "2012" ;
   schema:description "We describe a procedure for computing Floer and symplectic homology groups, with action filtration and algebraic operations, in a class of examples. Namely, we consider closed monotone symplectic manifolds with smooth symplectic divisors, Poincaré dual to a positive multiple of the symplectic form. We express the Floer homology of the manifold and the symplectic homology of the complement of the divisor, for a special class of Hamiltonians, in terms of absolute and relative Gromov--Witten invariants, and some additional Morse-theoretic information. As an application, we compute the symplectic homology rings of cotangent bundles of spheres, and compare our results with an earlier computation in string topology."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/1166051538> ;
   schema:inLanguage "en" ;
   schema:name "Filtered floer and symplectic homology via Gromov-Witten theory"@en ;
   schema:productID "809038246" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/809038246#PublicationEvent/2012> ;
   schema:url <http://purl.stanford.edu/wt500bq8486> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/809038246> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1166051538#Person/de_matos_geraldes_diogo_luis_miguel_pereira> # Luís Miguel Pereira De Matos Geraldes Diogo
    a schema:Person ;
   schema:familyName "De Matos Geraldes Diogo" ;
   schema:givenName "Luís Miguel Pereira" ;
   schema:name "Luís Miguel Pereira De Matos Geraldes Diogo" ;
    .

<http://viaf.org/viaf/118446797> # Y. Eliashberg
    a schema:Person ;
   schema:birthDate "1946" ;
   schema:familyName "Eliashberg" ;
   schema:givenName "Y." ;
   schema:name "Y. Eliashberg" ;
    .

<http://viaf.org/viaf/139860406> # Stanford University. Department of Mathematics.
    a schema:Organization ;
   schema:name "Stanford University. Department of Mathematics." ;
    .

<http://viaf.org/viaf/141137765> # Eleny Ionel
    a schema:Person ;
   schema:familyName "Ionel" ;
   schema:givenName "Eleny" ;
   schema:name "Eleny Ionel" ;
    .

<http://viaf.org/viaf/164830929> # Søren Galatius
    a schema:Person ;
   schema:birthDate "1976" ;
   schema:familyName "Galatius" ;
   schema:givenName "Søren" ;
   schema:name "Søren Galatius" ;
    .


Content-negotiable representations

Chiudi finestra

Per favore entra in WorldCat 

Non hai un account? Puoi facilmente crearne uno gratuito.