コンテンツへ移動
Filtered floer and symplectic homology via Gromov-Witten theory 資料のプレビュー
閉じる資料のプレビュー
確認中…

Filtered floer and symplectic homology via Gromov-Witten theory

著者: Luís Miguel Pereira De Matos Geraldes Diogo; Y Eliashberg; Søren Galatius; Eleny Ionel; Stanford University. Department of Mathematics.
出版: 2012.
論文: Thesis (Ph. D.)--Stanford University, 2012.
エディション/フォーマット:   学位論文/卒業論文 : Document : Thesis/dissertation : 電子書籍   コンピューターファイル : English
データベース:WorldCat
概要:
We describe a procedure for computing Floer and symplectic homology groups, with action filtration and algebraic operations, in a class of examples. Namely, we consider closed monotone symplectic manifolds with smooth symplectic divisors, Poincaré dual to a positive multiple of the symplectic form. We express the Floer homology of the manifold and the symplectic homology of the complement of the divisor, for a  続きを読む
評価:

(まだ評価がありません) 0 件のレビュー - 是非あなたから!

 

オンラインで入手

この資料へのリンク

オフラインで入手

&AllPage.SpinnerRetrieving; この資料の所蔵館を検索中…

詳細

資料の種類: Document, Thesis/dissertation, インターネット資料
ドキュメントの種類: インターネットリソース, コンピューターファイル
すべての著者/寄与者: Luís Miguel Pereira De Matos Geraldes Diogo; Y Eliashberg; Søren Galatius; Eleny Ionel; Stanford University. Department of Mathematics.
OCLC No.: 809038246
注記: Submitted to the Department of Mathematics.
物理形態: 1 online resource.
責任者: Luís Miguel Pereira de Matos Geraldes Diogo.

概要:

We describe a procedure for computing Floer and symplectic homology groups, with action filtration and algebraic operations, in a class of examples. Namely, we consider closed monotone symplectic manifolds with smooth symplectic divisors, Poincaré dual to a positive multiple of the symplectic form. We express the Floer homology of the manifold and the symplectic homology of the complement of the divisor, for a special class of Hamiltonians, in terms of absolute and relative Gromov--Witten invariants, and some additional Morse-theoretic information. As an application, we compute the symplectic homology rings of cotangent bundles of spheres, and compare our results with an earlier computation in string topology.

レビュー

ユーザーレビュー
GoodReadsのレビューを取得中…
DOGObooksのレビューを取得中…

タグ

まずはあなたから!
リクエストの確認

あなたは既にこの資料をリクエストしている可能性があります。このリクエストを続行してよろしければ、OK を選択してください。

リンクデータ


<http://www.worldcat.org/oclc/809038246>
bgn:inSupportOf"Thesis (Ph. D.)--Stanford University, 2012."
library:oclcnum"809038246"
rdf:typeschema:MediaObject
rdf:typej.0:Web_document
rdf:typeschema:Book
rdf:typebgn:Thesis
rdf:valueUnknown value: dct
rdf:valueUnknown value: deg
schema:contributor
schema:contributor
schema:contributor
schema:contributor
<http://viaf.org/viaf/139860406>
rdf:typeschema:Organization
schema:name"Stanford University. Department of Mathematics."
schema:creator
schema:datePublished"2012"
schema:description"We describe a procedure for computing Floer and symplectic homology groups, with action filtration and algebraic operations, in a class of examples. Namely, we consider closed monotone symplectic manifolds with smooth symplectic divisors, Poincaré dual to a positive multiple of the symplectic form. We express the Floer homology of the manifold and the symplectic homology of the complement of the divisor, for a special class of Hamiltonians, in terms of absolute and relative Gromov--Witten invariants, and some additional Morse-theoretic information. As an application, we compute the symplectic homology rings of cotangent bundles of spheres, and compare our results with an earlier computation in string topology."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1166051538>
schema:inLanguage"en"
schema:name"Filtered floer and symplectic homology via Gromov-Witten theory"@en
schema:publication
schema:url<http://purl.stanford.edu/wt500bq8486>
wdrs:describedby

Content-negotiable representations

ウインドウを閉じる

WorldCatにログインしてください 

アカウントをお持ちではないですか?簡単に 無料アカウントを作成することができます。.