doorgaan naar inhoud
Filtered floer and symplectic homology via Gromov-Witten theory Voorbeeldweergave van dit item
SluitenVoorbeeldweergave van dit item
Bezig met controle...

Filtered floer and symplectic homology via Gromov-Witten theory

Auteur: Luís Miguel Pereira De Matos Geraldes Diogo; Y Eliashberg; Søren Galatius; Eleny Ionel; Stanford University. Department of Mathematics.
Uitgever: 2012.
Proefschrift: Ph. D. Stanford University 2012
Editie/Formaat:   Scriptie/Proefschrift : Document : Scriptie/Dissertatie : e-Boek   Computerbestand : Engels
Database:WorldCat
Samenvatting:
We describe a procedure for computing Floer and symplectic homology groups, with action filtration and algebraic operations, in a class of examples. Namely, we consider closed monotone symplectic manifolds with smooth symplectic divisors, Poincaré dual to a positive multiple of the symplectic form. We express the Floer homology of the manifold and the symplectic homology of the complement of the divisor, for a  Meer lezen...
Beoordeling:

(nog niet beoordeeld) 0 met beoordelingen - U bent de eerste

 

Zoeken naar een online exemplaar

Links naar dit item

Zoeken naar een in de bibliotheek beschikbaar exemplaar

&AllPage.SpinnerRetrieving; Bibliotheken met dit item worden gezocht…

Details

Genre: Document, Scriptie/Dissertatie, Internetbron
Soort document: Internetbron, Computerbestand
Alle auteurs / medewerkers: Luís Miguel Pereira De Matos Geraldes Diogo; Y Eliashberg; Søren Galatius; Eleny Ionel; Stanford University. Department of Mathematics.
OCLC-nummer: 809038246
Opmerkingen: Submitted to the Department of Mathematics.
Beschrijving: 1 online resource
Verantwoordelijkheid: Luís Miguel Pereira de Matos Geraldes Diogo.

Fragment:

We describe a procedure for computing Floer and symplectic homology groups, with action filtration and algebraic operations, in a class of examples. Namely, we consider closed monotone symplectic manifolds with smooth symplectic divisors, Poincaré dual to a positive multiple of the symplectic form. We express the Floer homology of the manifold and the symplectic homology of the complement of the divisor, for a special class of Hamiltonians, in terms of absolute and relative Gromov--Witten invariants, and some additional Morse-theoretic information. As an application, we compute the symplectic homology rings of cotangent bundles of spheres, and compare our results with an earlier computation in string topology.

Beoordelingen

Beoordelingen door gebruikers
Beoordelingen van GoodReads worden opgehaald...
Bezig met opvragen DOGObooks-reviews...

Tags

U bent de eerste.
Bevestig deze aanvraag

Misschien heeft u dit item reeds aangevraagd. Selecteer a.u.b. Ok als u toch wilt doorgaan met deze aanvraag.

Gekoppelde data


Primary Entity

<http://www.worldcat.org/oclc/809038246> # Filtered floer and symplectic homology via Gromov-Witten theory
    a schema:MediaObject, pto:Web_document, schema:Book, bgn:Thesis, schema:CreativeWork ;
   bgn:inSupportOf "" ;
   library:oclcnum "809038246" ;
   schema:contributor <http://viaf.org/viaf/141137765> ; # Eleny Ionel
   schema:contributor <http://viaf.org/viaf/118446797> ; # Y. Eliashberg
   schema:contributor <http://viaf.org/viaf/164830929> ; # Søren Galatius
   schema:contributor <http://viaf.org/viaf/139860406> ; # Stanford University. Department of Mathematics.
   schema:creator <http://experiment.worldcat.org/entity/work/data/1166051538#Person/de_matos_geraldes_diogo_luis_miguel_pereira> ; # Luís Miguel Pereira De Matos Geraldes Diogo
   schema:datePublished "2012" ;
   schema:description "We describe a procedure for computing Floer and symplectic homology groups, with action filtration and algebraic operations, in a class of examples. Namely, we consider closed monotone symplectic manifolds with smooth symplectic divisors, Poincaré dual to a positive multiple of the symplectic form. We express the Floer homology of the manifold and the symplectic homology of the complement of the divisor, for a special class of Hamiltonians, in terms of absolute and relative Gromov--Witten invariants, and some additional Morse-theoretic information. As an application, we compute the symplectic homology rings of cotangent bundles of spheres, and compare our results with an earlier computation in string topology."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/1166051538> ;
   schema:inLanguage "en" ;
   schema:name "Filtered floer and symplectic homology via Gromov-Witten theory"@en ;
   schema:productID "809038246" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/809038246#PublicationEvent/2012> ;
   schema:url <http://purl.stanford.edu/wt500bq8486> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/809038246> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1166051538#Person/de_matos_geraldes_diogo_luis_miguel_pereira> # Luís Miguel Pereira De Matos Geraldes Diogo
    a schema:Person ;
   schema:familyName "De Matos Geraldes Diogo" ;
   schema:givenName "Luís Miguel Pereira" ;
   schema:name "Luís Miguel Pereira De Matos Geraldes Diogo" ;
    .

<http://viaf.org/viaf/118446797> # Y. Eliashberg
    a schema:Person ;
   schema:birthDate "1946" ;
   schema:familyName "Eliashberg" ;
   schema:givenName "Y." ;
   schema:name "Y. Eliashberg" ;
    .

<http://viaf.org/viaf/139860406> # Stanford University. Department of Mathematics.
    a schema:Organization ;
   schema:name "Stanford University. Department of Mathematics." ;
    .

<http://viaf.org/viaf/141137765> # Eleny Ionel
    a schema:Person ;
   schema:familyName "Ionel" ;
   schema:givenName "Eleny" ;
   schema:name "Eleny Ionel" ;
    .

<http://viaf.org/viaf/164830929> # Søren Galatius
    a schema:Person ;
   schema:birthDate "1976" ;
   schema:familyName "Galatius" ;
   schema:givenName "Søren" ;
   schema:name "Søren Galatius" ;
    .


Content-negotiable representations

Venster sluiten

Meld u aan bij WorldCat 

Heeft u geen account? U kunt eenvoudig een nieuwe gratis account aanmaken.