ข้ามไปที่เนือ้หา
Filtered floer and symplectic homology via Gromov-Witten theory แสดงตัวอย่างรายการนี้
ปิดแสดงตัวอย่างรายการนี้
ตรวจสอบ...

Filtered floer and symplectic homology via Gromov-Witten theory

ผู้แต่ง: Luís Miguel Pereira De Matos Geraldes Diogo; Y Eliashberg; Søren Galatius; Eleny Ionel; Stanford University. Department of Mathematics.
สำนักพิมพ์: 2012.
วิทยานิพนธ์: Ph. D. Stanford University 2012
ครั้งที่พิมพ์/รูปแบบ:   วิทยานิพนธ์ / ดุษฎีนิพนธ์ : เอกสาร : วิทยานิพนธ์ / ดุษฎีนิพนธ์ : หนังสืออีเล็กทรอนิกส์   ไฟล์คอมพิวเตอร์ : ภาษาอังกฤษ
ฐานข้อมูล:WorldCat
สรุป:
We describe a procedure for computing Floer and symplectic homology groups, with action filtration and algebraic operations, in a class of examples. Namely, we consider closed monotone symplectic manifolds with smooth symplectic divisors, Poincaré dual to a positive multiple of the symplectic form. We express the Floer homology of the manifold and the symplectic homology of the complement of the divisor, for a  อ่านมากขึ้น…
คะแนน:

(ยังไม่ให้คะแนน) 0 กับความคิดเห็น - เป็นคนแรก

 

ค้นหาสำเนาออนไลน์

เชื่อมโยงไปยังรายการนี้

ค้นหาสำเนาในห้องสมุด

&AllPage.SpinnerRetrieving; ค้นหาห้องสมุดที่มีรายการนี้

รายละเอียด

ขนิดวัสดุ: เอกสาร, วิทยานิพนธ์ / ดุษฎีนิพนธ์, ทรัพยากรอินแทอร์เน็ต
ประเภทเอกสาร แหล่งข้อมูลอินเทอร์เน็ต, ไฟล์คอมพิวเตอร์
ผู้แต่งทั้งหมด : ผู้แต่งร่วม Luís Miguel Pereira De Matos Geraldes Diogo; Y Eliashberg; Søren Galatius; Eleny Ionel; Stanford University. Department of Mathematics.
OCLC Number: 809038246
หมายเหตุ Submitted to the Department of Mathematics.
คำอธิบาย: 1 online resource
ความรับผิดชอบ: Luís Miguel Pereira de Matos Geraldes Diogo.

บทคัดย่อ:

We describe a procedure for computing Floer and symplectic homology groups, with action filtration and algebraic operations, in a class of examples. Namely, we consider closed monotone symplectic manifolds with smooth symplectic divisors, Poincaré dual to a positive multiple of the symplectic form. We express the Floer homology of the manifold and the symplectic homology of the complement of the divisor, for a special class of Hamiltonians, in terms of absolute and relative Gromov--Witten invariants, and some additional Morse-theoretic information. As an application, we compute the symplectic homology rings of cotangent bundles of spheres, and compare our results with an earlier computation in string topology.

รีวิว

ความคิดเห็นผู้ที่ใช้งาน
กำลังค้นคืน รีวิว GoodReads…
ค้นคืน DOGObooks บทวิจารณ์

แท็ก

เป็นคนแรก.
ยืนยันคำขอนี้

คุณอาจะร้องขอรายการนี้แล้. โปรดเลือก ตกลง ถ้าคุณต้องการดำเนินการคำขอนี้ต่อไป.

เชิ่อมโยงข้อมูล


Primary Entity

<http://www.worldcat.org/oclc/809038246> # Filtered floer and symplectic homology via Gromov-Witten theory
    a schema:MediaObject, pto:Web_document, schema:Book, bgn:Thesis, schema:CreativeWork ;
   bgn:inSupportOf "" ;
   library:oclcnum "809038246" ;
   schema:contributor <http://viaf.org/viaf/141137765> ; # Eleny Ionel
   schema:contributor <http://viaf.org/viaf/118446797> ; # Y. Eliashberg
   schema:contributor <http://viaf.org/viaf/164830929> ; # Søren Galatius
   schema:contributor <http://viaf.org/viaf/139860406> ; # Stanford University. Department of Mathematics.
   schema:creator <http://experiment.worldcat.org/entity/work/data/1166051538#Person/de_matos_geraldes_diogo_luis_miguel_pereira> ; # Luís Miguel Pereira De Matos Geraldes Diogo
   schema:datePublished "2012" ;
   schema:description "We describe a procedure for computing Floer and symplectic homology groups, with action filtration and algebraic operations, in a class of examples. Namely, we consider closed monotone symplectic manifolds with smooth symplectic divisors, Poincaré dual to a positive multiple of the symplectic form. We express the Floer homology of the manifold and the symplectic homology of the complement of the divisor, for a special class of Hamiltonians, in terms of absolute and relative Gromov--Witten invariants, and some additional Morse-theoretic information. As an application, we compute the symplectic homology rings of cotangent bundles of spheres, and compare our results with an earlier computation in string topology."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/1166051538> ;
   schema:inLanguage "en" ;
   schema:name "Filtered floer and symplectic homology via Gromov-Witten theory"@en ;
   schema:productID "809038246" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/809038246#PublicationEvent/2012> ;
   schema:url <http://purl.stanford.edu/wt500bq8486> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/809038246> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1166051538#Person/de_matos_geraldes_diogo_luis_miguel_pereira> # Luís Miguel Pereira De Matos Geraldes Diogo
    a schema:Person ;
   schema:familyName "De Matos Geraldes Diogo" ;
   schema:givenName "Luís Miguel Pereira" ;
   schema:name "Luís Miguel Pereira De Matos Geraldes Diogo" ;
    .

<http://viaf.org/viaf/118446797> # Y. Eliashberg
    a schema:Person ;
   schema:birthDate "1946" ;
   schema:familyName "Eliashberg" ;
   schema:givenName "Y." ;
   schema:name "Y. Eliashberg" ;
    .

<http://viaf.org/viaf/139860406> # Stanford University. Department of Mathematics.
    a schema:Organization ;
   schema:name "Stanford University. Department of Mathematics." ;
    .

<http://viaf.org/viaf/141137765> # Eleny Ionel
    a schema:Person ;
   schema:familyName "Ionel" ;
   schema:givenName "Eleny" ;
   schema:name "Eleny Ionel" ;
    .

<http://viaf.org/viaf/164830929> # Søren Galatius
    a schema:Person ;
   schema:birthDate "1976" ;
   schema:familyName "Galatius" ;
   schema:givenName "Søren" ;
   schema:name "Søren Galatius" ;
    .


Content-negotiable representations

ปิดหน้าต่าง

กรุณาลงชื่อเข้าสู่ระบบ WorldCat 

ยังไม่มีบัญชีผู้ใช้? คุณสามารถสร้างได้อย่างง่ายดาย สร้างบัญชีผู้ใช้ฟรี.