skip to content
Finitely generated Abelian Groups and similarity of matrices over a field Preview this item
ClosePreview this item
Checking...

Finitely generated Abelian Groups and similarity of matrices over a field

Author: Christopher Norman
Publisher: London ; New York : Springer, ©2012.
Series: Springer undergraduate mathematics series.
Edition/Format:   Print book : EnglishView all editions and formats
Summary:

This book provides an introduction to the decomposition of finitely generated abelian groups and canonical forms of matrices, and explores the analogous theory of matrix similarity over a field.  Read more...

Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: Christopher Norman
ISBN: 9781447127291 1447127293
OCLC Number: 780048041
Notes: Includes index.
Description: xii, 381 pages ; 24 cm.
Contents: Matrices with integer entries: the Smith normal form --
Basic theory of additive Abelian groups --
Decomposition of finitely generated Z-modules --
The polynomial ring F[x] and matrices over F[x] --
F[x]-modules: similarity of t x t matrices over field F --
Canonical forms and similarity classes of square matrices over a field.
Series Title: Springer undergraduate mathematics series.
Responsibility: Christopher Norman.

Reviews

Editorial reviews

Publisher Synopsis

From the reviews:"`Designed to be a second course in linear algebra suitable for second/third mathematics undergraduates, or postgraduates', will help the readers to improve their knowledge of basic Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Related Subjects:(6)

User lists with this item (1)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/780048041> # Finitely generated Abelian Groups and similarity of matrices over a field
    a schema:CreativeWork, schema:Book ;
   library:oclcnum "780048041" ;
   library:placeOfPublication <http://dbpedia.org/resource/New_York_City> ; # New York
   library:placeOfPublication <http://dbpedia.org/resource/London> ; # London
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/enk> ;
   schema:about <http://id.worldcat.org/fast/1012163> ; # Mathematics
   schema:about <http://id.worldcat.org/fast/923918> ; # Field theory (Physics)
   schema:about <http://id.worldcat.org/fast/1012399> ; # Matrices
   schema:about <http://id.worldcat.org/fast/794345> ; # Abelian groups
   schema:about <http://dewey.info/class/512.25/e23/> ;
   schema:about <http://id.worldcat.org/fast/805020> ; # Algorithms
   schema:about <http://id.worldcat.org/fast/948521> ; # Group theory
   schema:bookFormat bgn:PrintBook ;
   schema:copyrightYear "2012" ;
   schema:creator <http://viaf.org/viaf/9411912> ; # Christopher Norman
   schema:datePublished "2012" ;
   schema:description "Matrices with integer entries: the Smith normal form -- Basic theory of additive Abelian groups -- Decomposition of finitely generated Z-modules -- The polynomial ring F[x] and matrices over F[x] -- F[x]-modules: similarity of t x t matrices over field F -- Canonical forms and similarity classes of square matrices over a field."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/1078321675> ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/1078321675#Series/springer_undergraduate_mathematics_series> ; # Springer undergraduate mathematics series.
   schema:name "Finitely generated Abelian Groups and similarity of matrices over a field"@en ;
   schema:productID "780048041" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/780048041#PublicationEvent/london_new_york_springer_2012> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/1078321675#Agent/springer> ; # Springer
   schema:workExample <http://worldcat.org/isbn/9781447127291> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/780048041> ;
    .


Related Entities

<http://dbpedia.org/resource/London> # London
    a schema:Place ;
   schema:name "London" ;
    .

<http://dbpedia.org/resource/New_York_City> # New York
    a schema:Place ;
   schema:name "New York" ;
    .

<http://experiment.worldcat.org/entity/work/data/1078321675#Series/springer_undergraduate_mathematics_series> # Springer undergraduate mathematics series.
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/780048041> ; # Finitely generated Abelian Groups and similarity of matrices over a field
   schema:name "Springer undergraduate mathematics series." ;
   schema:name "Springer undergraduate mathematics series" ;
    .

<http://id.worldcat.org/fast/1012163> # Mathematics
    a schema:Intangible ;
   schema:name "Mathematics"@en ;
    .

<http://id.worldcat.org/fast/1012399> # Matrices
    a schema:Intangible ;
   schema:name "Matrices"@en ;
    .

<http://id.worldcat.org/fast/794345> # Abelian groups
    a schema:Intangible ;
   schema:name "Abelian groups"@en ;
    .

<http://id.worldcat.org/fast/805020> # Algorithms
    a schema:Intangible ;
   schema:name "Algorithms"@en ;
    .

<http://id.worldcat.org/fast/923918> # Field theory (Physics)
    a schema:Intangible ;
   schema:name "Field theory (Physics)"@en ;
    .

<http://id.worldcat.org/fast/948521> # Group theory
    a schema:Intangible ;
   schema:name "Group theory"@en ;
    .

<http://viaf.org/viaf/9411912> # Christopher Norman
    a schema:Person ;
   schema:familyName "Norman" ;
   schema:givenName "Christopher" ;
   schema:name "Christopher Norman" ;
    .

<http://worldcat.org/isbn/9781447127291>
    a schema:ProductModel ;
   schema:isbn "1447127293" ;
   schema:isbn "9781447127291" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.