skip to content
Fixed point theorems and their applications Preview this item
ClosePreview this item

Fixed point theorems and their applications

Author: Ioannis Farmakis; Martin A Moskowitz; World Scientific (Firm)
Publisher: Singapore ; Hackensack, N.J. : World Scientific Pub. Co., ©2013.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Database:WorldCat
Summary:
This is the only book that deals comprehensively with fixed point theorems throughout mathematics. Their importance is due, as the book demonstrates, to their wide applicability. Beyond the first chapter, each of the other seven can be read independently of the others so the reader has much flexibility to follow his/her own interests. The book is written for graduate students and professional mathematicians and  Read more...
Getting this item's online copy... Getting this item's online copy...

Find a copy in the library

Getting this item's location and availability... Getting this item's location and availability...

WorldCat

Find it in libraries globally
Worldwide libraries own this item

Details

Genre/Form: Electronic books
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Ioannis Farmakis; Martin A Moskowitz; World Scientific (Firm)
ISBN: 9789814458924 9814458929
OCLC Number: 874921206
Description: 1 online resource (xi, 234 pages) : illustrations
Contents: Introduction --
1. Early fixed point theorems. 1.1. The Picard-Banach theorem. 1.2. Vector fields on spheres. 1.3. Proof of the Brouwer theorem and corollaries. 1.4. Fixed point theorems for groups of affine maps of [symbol] --
2. Fixed point theorems in analysis. 2.1. The Schaüder-Tychonoff theorem. 2.2. Applications of the Schaüder-Tychonoff theorem. 2.3. The theorems of Hahn, Kakutani and Markov-Kakutani. 2.4. Amenable groups --
3. The Lefschetz fixed point theorem. 3.1. The Lefschetz theorem for compact polyhedra. 3.2. The Lefschetz theorem for a compact manifold. 3.3. Proof of the Lefschetz theorem. 3.4. Some applications. 3.5. The Atiyah-Bott fixed point theorem --
4. Fixed point theorems in geometry. 4.1. Some generalities on Riemannian manifolds. 4.2. Hadamard manifolds and Cartan's theorem. 4.3. Fixed point theorems for compact manifolds --
5. Fixed points of volume preserving maps. 5.1. The Poincaré recurrence theorem. 5.2. Symplectic geometry and its fixed point theorems. 5.3. Poincaré's last geometric theorem. 5.4. Automorphisms of Lie algebras. 5.5. Hyperbolic automorphisms of a manifold. 5.6. The Lefschetz zeta function --
6. Borel's fixed point theorem in algebraic groups. 6.1. Complete varieties and Borel's theorem. 6.2. The projective and Grassmann spaces. 6.3. Projective varieties. 6.4. Consequences of Borel's fixed point. 6.5. Two conjugacy theorems for real linear Lie groups --
7. Miscellaneous fixed point theorems. 7.1. Applications to number theory. 7.2. Fixed points in group theory. 7.3. A fixed point theorem in complex analysis --
8. A fixed point theorem in set theory --
Afterword.
Responsibility: Ioannis Farmakis, Martin Moskowitz.

Abstract:

This is the only book that deals comprehensively with fixed point theorems throughout mathematics. Their importance is due, as the book demonstrates, to their wide applicability. Beyond the first chapter, each of the other seven can be read independently of the others so the reader has much flexibility to follow his/her own interests. The book is written for graduate students and professional mathematicians and could be of interest to physicists, economists and engineers.
Retrieving notes about this item Retrieving notes about this item

Reviews

User-contributed reviews

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.