skip to content
Floer homology groups in Yang-Mills theory Preview this item
ClosePreview this item
Checking...

Floer homology groups in Yang-Mills theory

Author: S K Donaldson; M Furuta; D Kotschick
Publisher: Cambridge ; New York : Cambridge University Press, 2002.
Series: Cambridge tracts in mathematics, 147.
Edition/Format:   Book : EnglishView all editions and formats
Database:WorldCat
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: S K Donaldson; M Furuta; D Kotschick
ISBN: 0521808030 9780521808033
OCLC Number: 47056362
Description: vii, 236 p. ; 24 cm.
Contents: Yang-Mills theory over compact manifolds --
The case of a compact 4-manifold --
Technical results --
Manifolds with tubular ends --
Yang-Mills theory and 3-manifolds --
Initial discussion --
The Chern-Simons functional --
The instanton equation --
Linear operators --
Appendix A: local models --
Appendix B: pseudo-holomorphic maps --
Appendix C: relations with mechanics --
Linear analysis --
Separation of variables --
Sobolev spaces on tubes --
Remarks on other operators --
The addition property --
Weighted spaces --
Floer's grading function; relation with the Atiyah, Patodi, Singer theory --
Refinement of weighted theory --
L[superscript p] theory --
Gauge theory and tubular ends --
Exponential decay --
Moduli theory --
Moduli theory and weighted spaces --
Gluing instantons --
Gluing in the reducible case --
Appendix A: further analytical results --
Convergence in the general case --
Gluing in the Morse--Bott case --
The Floer homology groups --
Compactness properties --
Floer's instanton homology groups --
Independence of metric --
Orientations --
Deforming the equations --
Transversality arguments --
U(2) and SO(3) connections --
Floer homology and 4-manifold invariants --
The conceptual picture --
The straightforward case --
Review of invariants for closed 4-manifolds --
Invariants for manifolds with boundary and b[superscript +]] 1 --
Reducible connections and cup products --
The maps D[subscript 1], D[subscript 2] --
Manifolds with b[superscript +] = 0, 1 --
The case b[superscript +] = 1.
Series Title: Cambridge tracts in mathematics, 147.
Responsibility: S.K. Donaldson with the assistance of M. Furuta and D. Kotschick.
More information:

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


<http://www.worldcat.org/oclc/47056362>
library:oclcnum"47056362"
library:placeOfPublication
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/47056362>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
<http://id.worldcat.org/fast/940919>
rdf:typeschema:Intangible
schema:name"Geometry, Differential"@en
schema:name"Geometry, Differential."@en
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2002"
schema:exampleOfWork<http://worldcat.org/entity/work/id/7183293>
schema:inLanguage"en"
schema:name"Floer homology groups in Yang-Mills theory"@en
schema:numberOfPages"236"
schema:publisher
schema:url
schema:workExample

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.