コンテンツへ移動
Formation of Well-defined Nanocolumns by Ion Tracking Lithography 資料のプレビュー
閉じる資料のプレビュー
確認中…

Formation of Well-defined Nanocolumns by Ion Tracking Lithography

著者: T E FelterR J ContoliniR G MusketP C SearsonJ Macaulayすべての著者
出版: Washington, D.C : United States. Dept. of Energy ; Oak Ridge, Tenn. : Distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2003.
エディション/フォーマット:   電子書籍 : Document : Conference publication : National government publication : English
データベース:WorldCat
概要:
Low dimensional systems on the nanometer scale afford a wealth of interesting possibilities including highly anisotropic behavior and quantum effects. Nanocolumns permit electrical and mechanical contact, yet benefit from two confined dimensions. This confinement leads to new optical, mechanical, electrical, chemical, and magnetic properties. We construct nanocolumn arrays with precise definition and independent  続きを読む
評価:

(まだ評価がありません) 0 件のレビュー - 是非あなたから!

件名:
関連情報:

 

オンラインで入手

この資料へのリンク

オフラインで入手

&AllPage.SpinnerRetrieving; この資料の所蔵館を検索中…

詳細

資料の種類: Conference publication, Document, Government publication, National government publication, インターネット資料
ドキュメントの種類: インターネットリソース, コンピューターファイル
すべての著者/寄与者: T E Felter; R J Contolini; R G Musket; P C Searson; J Macaulay; Lawrence Livermore National Laboratory.; United States. Department of Energy.; United States. Department of Energy. Office of Scientific and Technical Information.
OCLC No.: 316513885
注記: Published through the Information Bridge: DOE Scientific and Technical Information.
04/12/2003.
"UCRL-JC-150938."
Spring Meeting of the Materials Research Society, San Francisco, CA (US), 04/22/2003--04/25/2003.
Felter, T E; Contolini, R J; Musket, R G; Searson, P C; Macaulay, J.
物理形態: FILE: 9 ; SIZE: 1 MBYTES pages PDF-
詳細: Mode of access: World Wide Web.

概要:

Low dimensional systems on the nanometer scale afford a wealth of interesting possibilities including highly anisotropic behavior and quantum effects. Nanocolumns permit electrical and mechanical contact, yet benefit from two confined dimensions. This confinement leads to new optical, mechanical, electrical, chemical, and magnetic properties. We construct nanocolumn arrays with precise definition and independent control of diameter, length, orientation, areal density and composition so that geometry can be directly correlated to the quantum physical property of interest. The precision and control are products of the fabrication technique that we use. The process starts with an ion of sufficient energy to ''track'' a dielectric such as a film applied uniformly onto a substrate. The energy loss of the ion alters chemical bonding in the dielectric along the ion's straight trajectory. A suitable etchant quickly dissolves the latent tracks leaving high aspect ratio holes of small diameter ({approx}10nm) penetrating a film as thick as several microns. These small holes are interesting and useful in their own right and can be made to any desired size by continuing the etching process. Moreover, they serve as molds for electrochemical filling. After this electro-deposition, the mold material can be removed leaving the columns firmly attached to the substrate at the desired orientation. A variety of structures can be envisioned with these techniques. As examples, we have created arrays of Ni and of Pt nanocolumns ({approx}60 nm diameter and {approx}600 nm long) oriented perpendicular to the substrate. The high aspect ratio and small diameter of the columns enables easy observation of quantum behavior, namely efficient electron field emission and Fowler Nordheim behavior.

レビュー

ユーザーレビュー
GoodReadsのレビューを取得中…
DOGObooksのレビューを取得中…

タグ

まずはあなたから!
リクエストの確認

あなたは既にこの資料をリクエストしている可能性があります。このリクエストを続行してよろしければ、OK を選択してください。

リンクデータ


<http://www.worldcat.org/oclc/316513885>
library:oclcnum"316513885"
library:placeOfPublication
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/316513885>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:author
schema:author
schema:author
schema:author
schema:author
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
<http://viaf.org/viaf/305307678>
rdf:typeschema:Organization
schema:name"United States. Department of Energy. Office of Scientific and Technical Information."
schema:contributor
schema:datePublished"2003"
schema:description"Low dimensional systems on the nanometer scale afford a wealth of interesting possibilities including highly anisotropic behavior and quantum effects. Nanocolumns permit electrical and mechanical contact, yet benefit from two confined dimensions. This confinement leads to new optical, mechanical, electrical, chemical, and magnetic properties. We construct nanocolumn arrays with precise definition and independent control of diameter, length, orientation, areal density and composition so that geometry can be directly correlated to the quantum physical property of interest. The precision and control are products of the fabrication technique that we use. The process starts with an ion of sufficient energy to ''track'' a dielectric such as a film applied uniformly onto a substrate. The energy loss of the ion alters chemical bonding in the dielectric along the ion's straight trajectory. A suitable etchant quickly dissolves the latent tracks leaving high aspect ratio holes of small diameter ({approx}10nm) penetrating a film as thick as several microns. These small holes are interesting and useful in their own right and can be made to any desired size by continuing the etching process. Moreover, they serve as molds for electrochemical filling. After this electro-deposition, the mold material can be removed leaving the columns firmly attached to the substrate at the desired orientation. A variety of structures can be envisioned with these techniques. As examples, we have created arrays of Ni and of Pt nanocolumns ({approx}60 nm diameter and {approx}600 nm long) oriented perpendicular to the substrate. The high aspect ratio and small diameter of the columns enables easy observation of quantum behavior, namely efficient electron field emission and Fowler Nordheim behavior."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/194277557>
schema:inLanguage"en"
schema:name"Formation of Well-defined Nanocolumns by Ion Tracking Lithography"@en
schema:publisher
schema:publisher
schema:url<http://www.osti.gov/servlets/purl/15007723-vvLhwW/native/>
schema:url

Content-negotiable representations

ウインドウを閉じる

WorldCatにログインしてください 

アカウントをお持ちではないですか?簡単に 無料アカウントを作成することができます。.