## Find a copy online

### Links to this item

University of Alberta Access (Unlimited Concurrent Users) from Springer

## Find a copy in the library

Finding libraries that hold this item...

## Details

Genre/Form: | Electronic books |
---|---|

Additional Physical Format: | Printed edition: |

Material Type: | Bibliographic data, Internet resource |

Document Type: | Internet Resource, Computer File |

All Authors / Contributors: |
Sergey P Kiselev; Evgenii V Vorozhtsov; Vasily M Fomin |

ISBN: | 9781461215721 1461215722 9781461271987 1461271983 |

OCLC Number: | 840278165 |

Description: | 1 online resource (XIV, 575 pages). |

Contents: | 1 Definitions of Continuum Mechanics -- 1.1 Vectors and Tensors -- 1.2 Eulerian and Lagrangian Description of a Continuum: Strain Tensor -- 1.3 Stress Tensor -- References -- 2 Fundamental Principles and Laws of Continuum Mechanics -- 2.1 Equations of Continuity, Motion, and Energy for a Continuum -- 2.2 The Hamilton -- Ostrogradsky's Variational Principle in Continuum Mechanics -- 2.3 Conservation Laws for Energy and Momentum in Continuum Mechanics -- References -- 3 The Features of the Solutions of Continuum Mechanics Problems -- 3.1 Similarity and Dimension Theory in Continuum Mechanics -- 3.2 The Characteristics of Partial Differential Equations. -- 3.3 Discontinuity Surfaces in Continuum Mechanics -- References -- 4 Ideal Fluid -- 4.1 Integrals of Motion Equations of Ideal Fluid and Gas -- 4.2 Planar Irrotational Steady Motions of an Ideal Incompressible Fluid -- 4.3 Axisymmetric and Three-Dimensional Potential Ideal Incompressible Fluid Flows -- 4.4 Nonstationary Motion of a Solid in the Fluid -- 4.5 Vortical Motions of Ideal Fluid -- References -- 5 Viscous Fluid -- 5.1 General Equations of Viscous Incompressible Fluid -- 5.2 Viscous Fluid Flows at Small Reynolds Numbers -- 5.3 Viscous Fluid Flows at Large Reynolds Numbers -- 5.4 Turbulent Fluid Flows -- References -- 6 Gas Dynamics -- 6.1 One-Dimensional Stationary Gas Flows -- 6.2 Nonstationary One-Dimensional Flows of Ideal Gas -- 6.3 Planar Irrotational Ideal Gas Motion (Linear Approximation) -- 6.4 Planar Irrotational Stationary Ideal Gas Flow (General Case) -- 6.5 The Fundamentals of the Gasdynamic Design Technology -- References -- 7 Multiphase Media -- 7.1 Mathematical Models of Multiphase Media -- 7.2 Correctness of the Cauchy Problem: Relations at Discontinuities in Multiphase Media -- 7.3 Quasi-One-Dimensional Flows of a Gas-Particle Mixture in Laval Nozzles -- 7.4 The Continual-Discrete Model and Caustics in the Pseudogas of Particles -- 7.5 Nonstationary Processes in Gas-Particle Mixtures -- 7.6 The Flows of Heterogeneous Media without Regard for Inertial Effects -- 7.7 Wave Processes in Bubbly Liquids -- References -- Appendix B: Glossary of Programs. |

Series Title: | Modeling and simulation in science, engineering & technology. |

Responsibility: | by Sergey P. Kiselev, Evgenii V. Vorozhtsov, Vasily M. Fomin. |

### Abstract:

## Reviews

*Editorial reviews*

Publisher Synopsis

"This is a self-contained book that systematically takes the reader from basic principles to the most advanced topics of fluid mechanics... Every concept is rigorously derived and proof is provided for theorems and equations... This reviewer has found the combination of fluid mechanics with computer algebra very useful since it allows one to `wet the hands' with simple programs thus making the learning process more interactive... The book is well written, and every topic has a rigorous treatment from the mathematical point of view. It is very easy to move through the book since an initial index and a good final subject index are given... This reviewer certainly recommends the purchase of [this book], since it contains a lot of interesting material not commonly found in usual textbooks." -Applied Mechanics Review"This new text/reference presents the basic concepts and methods of fluid mechanics, including Lagrangian and Eulerian descriptions, tensors of stresses and strains, continuity, momentum, energy, thermodynamics laws, and similarity theory. The models and their solutions are presented within a new context of the mechanics of multiphase media. The treatment fully utilizes the computer algebra and software system Mathematica (to both develop concepts and help the reader to master modern methods of solving problems in fluid mechanics).Foundations of Fluid Mechanics with Applications is a complete and accessible text/reference for graduates and professionals in mechanics, applied mathematics, physical sciences, materials science, and engineering. It is an essential resource for the study and use of modern solution methods for problems in fluid mechanics and the underlying mathematical models."-Analele Stiintifice Read more...

*User-contributed reviews*