passa ai contenuti
Foundations of the classical theory of partial differential equations Anteprima di questo documento
ChiudiAnteprima di questo documento
Stiamo controllando…

Foundations of the classical theory of partial differential equations

Autore: I︠U︡ V Egorov; M A Shubin
Editore: Berlin ; New York : Springer, ©1998.
Edizione/Formato:   book_printbook : EnglishVedi tutte le edizioni e i formati
Banca dati:WorldCat

From the reviews: "...I think the volume is a great success ... a welcome addition to the literature ..." The Mathematical Intelligencer, 1993 "... It is comparable in scope with the great  Per saperne di più…


(non ancora votato) 0 con commenti - Diventa il primo.

Altri come questo


Trova una copia online

Collegamenti a questo documento

Trova una copia in biblioteca

&AllPage.SpinnerRetrieving; Stiamo ricercando le biblioteche che possiedono questo documento…


Tipo materiale: Risorsa internet
Tipo documento: Book, Internet Resource
Tutti gli autori / Collaboratori: I︠U︡ V Egorov; M A Shubin
ISBN: 3540638253 9783540638254
Numero OCLC: 39465204
Note: "Second printing 1998 of the first edition 1992, which was originally published as Partial Differential Equations I, volume 30 of the Encyclopaedia of mathematical sciences"--Title page verso.
Descrizione: 259 pages : illustrations ; 24 cm
Contenuti: 1. Basic Concepts.- 1. Basic Definitions and Examples.- 1.1. The Definition of a Linear Partial Differential Equation.- 1.2. The Role of Partial Differential Equations in the Mathematical Modeling of Physical Processes.- 1.3. Derivation of the Equation for the Longitudinal Elastic Vibrations of a Rod.- 1.4. Derivation of the Equation of Heat Conduction.- 1.5. The Limits of Applicability of Mathematical Models.- 1.6. Initial and Boundary Conditions.- 1.7. Examples of Linear Partial Differential Equations.- 1.8. The Concept of Well-Posedness of a Boundary-value Problem. The Cauchy Problem.- 2. The Cauchy-Kovalevskaya Theorem and Its Generalizations.- 2.1. The Cauchy-Kovalevskaya Theorem.- 2.2. An Example of Nonexistence of an Analytic Solution.- 2.3. Some Generalizations of the Cauchy-Kovalevskaya Theorem. Characteristics.- 2.4. Ovsyannikov's Theorem.- 2.5. Holmgren's Theorem.- 3. Classification of Linear Differential Equations. Reduction to Canonical Form and Characteristics.- 3.1. Classification of Second-Order Equations and Their Reduction to Canonical Form at a Point.- 3.2. Characteristics of Second-Order Equations and Reduction to Canonical Form of Second-Order Equations with Two Independent Variables.- 3.3. Ellipticity, Hyperbolicity, and Parabolicity for General Linear Differential Equations and Systems.- 3.4. Characteristics as Solutions of the Hamilton-Jacobi Equation.- 2. The Classical Theory.- 1. Distributions and Equations with Constant Coefficients.- 1.1. The Concept of a Distribution.- 1.2. The Spaces of Test Functions and Distributions.- 1.3. The Topology in the Space of Distributions.- 1.4. The Support of a Distribution. The General Form of Distributions.- 1.5. Differentiation of Distributions.- 1.6. Multiplication of a Distribution by a Smooth Function. Linear Differential Operators in Spaces of Distributions.- 1.7. Change of Variables and Homogeneous Distributions.- 1.8. The Direct or Tensor Product of Distributions.- 1.9. The Convolution of Distributions.- 1.10. The Fourier Transform of Tempered Distributions.- 1.11. The Schwartz Kernel of a Linear Operator.- 1.12. Fundamental Solutions for Operators with Constant Coefficients.- 1.13. A Fundamental Solution for the Cauchy Problem.- 1.14. Fundamental Solutions and Solutions of Inhomogeneous Equations.- 1.15. Duhamel's Principle for Equations with Constant Coefficients.- 1.16. The Fundamental Solution and the Behavior of Solutions at Infinity.- 1.17. Local Properties of Solutions of Homogeneous Equations with Constant Coefficients. Hypoellipticity and Ellipticity.- 1.18. Liouville's Theorem for Equations with Constant Coefficients.- 1.19. Isolated Singularities of Solutions of Hypoelliptic Equations.- 2. Elliptic Equations and Boundary-Value Problems.- 2.1. The Definition of Ellipticity. The Laplace and Poisson Equations.- 2.2. A Fundamental Solution for the Laplacian Operator. Green's Formula.- 2.3. Mean-Value Theorems for Harmonic Functions.- 2.4. The Maximum Principle for Harmonic Functions and the Normal Derivative Lemma.- 2.5. Uniqueness of the Classical Solutions of the Dirichlet and Neumann Problems for Laplace's Equation.- 2.6. Internal A Priori Estimates for Harmonic Functions. Harnack's Theorem.- 2.7. The Green's Function of the Dirichlet Problem for Laplace's Equation.- 2.8. The Green's Function and the Solution of the Dirichlet Problem for a Ball and a Half-Space. The Reflection Principle.- 2.9. Harnack's Inequality and Liouville's Theorem.- 2.10. The Removable Singularities Theorem.- 2.11. The Kelvin Transform and the Statement of Exterior Boundary-Value Problems for Laplace's Equation.- 2.12. Potentials.- 2.13. Application of Potentials to the Solution of Boundary-Value Problems.- 2.14. Boundary-Value Problems for Poisson's Equation in Holder Spaces. Schauder Estimates.- 2.15. Capacity.- 2.16. The Dirichlet Problem in the Case of Arbitrary Regions (The Method of Balayage). Regularity of a Boundary Point. The Wiener Regularity Criterion.- 2.17. General Second-Order Elliptic Equations. Eigenvalues and Eigenfunctions of Elliptic Operators.- 2.18. Higher-Order Elliptic Equations and General Elliptic Boundary-Value Problems. The Shapiro-Lopatinskij Condition.- 2.19. The Index of an Elliptic Boundary-Value Problem.- 2.20. Ellipticity with a Parameter and Unique Solvability of Elliptic Boundary-Value Problems.- 3. Sobolev Spaces and Generalized Solutions of Boundary-Value Problems.- 3.1. The Fundamental Spaces.- 3.2. Imbedding and Trace Theorems.- 3.3. Generalized Solutions of Elliptic Boundary-Value Problems and Eigenvalue Problems.- 3.4. Generalized Solutions of Parabolic Boundary-Value Problems.- 3.5. Generalized Solutions of Hyperbolic Boundary-Value Problems.- 4. Hyperbolic Equations.- 4.1. Definitions and Examples.- 4.2. Hyperbolicity and Well-Posedness of the Cauchy Problem.- 4.3. Energy Estimates.- 4.4. The Speed of Propagation of Disturbances.- 4.5. Solution of the Cauchy Problem for the Wave Equation.- 4.6. Huyghens' Principle.- 4.7. The Plane Wave Method.- 4.8. The Solution of the Cauchy Problem in the Plane.- 4.9. Lacunae.- 4.10. The Cauchy Problem for a Strictly Hyperbolic System with Rapidly Oscillating Initial Data.- 4.11. Discontinuous Solutions of Hyperbolic Equations.- 4.12. Symmetric Hyperbolic Operators.- 4.13. The Mixed Boundary-Value Problem.- 4.14. The Method of Separation of Variables.- 5. Parabolic Equations.- 5.1. Definitions and Examples.- 5.2. The Maximum Principle and Its Consequences.- 5.3. Integral Estimates.- 5.4. Estimates in Holder Spaces.- 5.5. The Regularity of Solutions of a Second-Order Parabolic Equation.- 5.6. Poisson's Formula.- 5.7. A Fundamental Solution of the Cauchy Problem for a Second-Order Equation with Variable Coefficients.- 5.8. Shilov-Parabolic Systems.- 5.9. Systems with Variable Coefficients.- 5.10. The Mixed Boundary-Value Problem.- 5.11. Stabilization of the Solutions of the Mixed Boundary-Value Problem and the Cauchy Problem.- 6. General Evolution Equations.- 6.1. The Cauchy Problem. The Hadamard and Petrovskij Conditions.- 6.2. Application of the Laplace Transform.- 6.3. Application of the Theory of Semigroups.- 6.4. Some Examples.- 7. Exterior Boundary-Value Problems and Scattering Theory.- 7.1. Radiation Conditions.- 7.2. The Principle of Limiting Absorption and Limiting Amplitude.- 7.3. Radiation Conditions and the Principle of Limiting Absorption for Higher-Order Equations and Systems.- 7.4. Decay of the Local Energy.- 7.5. Scattering of Plane Waves.- 7.6. Spectral Analysis.- 7.7. The Scattering Operator and the Scattering Matrix.- 8. Spectral Theory of One-Dimensional Differential Operators.- 8.1. Outline of the Method of Separation of Variables.- 8.2. Regular Self-Adjoint Problems.- 8.3. Periodic and Antiperiodic Boundary Conditions.- 8.4. Asymptotics of the Eigenvalues and Eigenfunctions in the Regular Case.- 8.5. The Schrodinger Operator on a Half-Line.- 8.6. Essential Self-Adjointness and Self-Adjoint Extensions. The Weyl Circle and the Weyl Point.- 8.7. The Case of an Increasing Potential.- 8.8. The Case of a Rapidly Decaying Potential.- 8.9. The Schrodinger Operator on the Entire Line.- 8.10. The Hill Operator.- 9. Special Functions.- 9.1. Spherical Functions.- 9.2. The Legendre Polynomials.- 9.3. Cylindrical Functions.- 9.4. Properties of the Cylindrical Functions.- 9.5. Airy's Equation.- 9.6. Some Other Classes of Functions.- References.- Author Index.
Altri titoli: Partial differential equations.
Responsabilità: Yu. V. Egorov, M.A. Shubin.
Maggiori informazioni:


Recensioni editoriali

Sinossi editore

From the reviews: "...I think the volume is a great success ... a welcome addition to the literature ..." The Mathematical Intelligencer, 1993 "... According to the authors ... the work was written Per saperne di più…

Commenti degli utenti
Recuperando commenti GoodReads…
Stiamo recuperando commenti DOGObooks


Diventa il primo.
Conferma questa richiesta

Potresti aver già richiesto questo documento. Seleziona OK se si vuole procedere comunque con questa richiesta.

Dati collegati

Primary Entity

<> # Foundations of the classical theory of partial differential equations
    a schema:CreativeWork, schema:Book ;
    bgn:translationOfWork <> ;
    library:oclcnum "39465204" ;
    library:placeOfPublication <> ; # New York
    library:placeOfPublication <> ;
    library:placeOfPublication <> ; # Berlin
    rdfs:seeAlso <> ; # Partial differential equations.
    schema:about <> ; # Équations aux dérivées partielles
    schema:about <> ; # espace Sobolev
    schema:about <> ; # équation hyperbolique
    schema:about <> ; # Differential equations, Partial
    schema:about <> ; # EDP linéaire
    schema:about <> ; # problème Cauchy
    schema:about <> ;
    schema:about <> ; # théorie dispersion
    schema:about <> ; # distribution
    schema:about <> ; # théorie spectrale
    schema:about <> ; # équation elliptique
    schema:about <> ; # fonction spéciale
    schema:about <> ; # problème valeur limite
    schema:about <> ; # Partiële differentiaalvergelijkingen
    schema:about <> ; # EDP
    schema:about <> ; # équation parabolique
    schema:about <> ; # Equacoes diferenciais parciais
    schema:bookFormat bgn:PrintBook ;
    schema:contributor <> ; # Mikhail Aleksandrovich Shubin
    schema:copyrightYear "1998" ;
    schema:creator <> ; # I︠U︡riĭ Vladimirovich Egorov
    schema:datePublished "1998" ;
    schema:exampleOfWork <> ;
    schema:inLanguage "en" ;
    schema:name "Foundations of the classical theory of partial differential equations"@en ;
    schema:productID "39465204" ;
    schema:publication <> ;
    schema:publisher <> ; # Springer
    schema:url <> ;
    schema:url <> ;
    schema:url <> ;
    schema:workExample <> ;
    wdrs:describedby <> ;

Related Entities

<> # New York
    a schema:Place ;
    schema:name "New York" ;

<> # Partial differential equations.
    a schema:CreativeWork ;
    schema:name "Partial differential equations." ;

<> # I︠U︡riĭ Vladimirovich Egorov
    a schema:Person ;
    schema:familyName "Egorov" ;
    schema:givenName "I︠U︡riĭ Vladimirovich" ;
    schema:givenName "I︠U︡. V." ;
    schema:name "I︠U︡riĭ Vladimirovich Egorov" ;

<> # Mikhail Aleksandrovich Shubin
    a schema:Person ;
    schema:birthDate "1944" ;
    schema:familyName "Shubin" ;
    schema:givenName "Mikhail Aleksandrovich" ;
    schema:givenName "M. A." ;
    schema:name "Mikhail Aleksandrovich Shubin" ;

<> # Equacoes diferenciais parciais
    a schema:Intangible ;
    schema:name "Equacoes diferenciais parciais"@en ;

<> # équation elliptique
    a schema:Intangible ;
    schema:name "équation elliptique"@en ;

<> # équation hyperbolique
    a schema:Intangible ;
    schema:name "équation hyperbolique"@en ;

<> # équation parabolique
    a schema:Intangible ;
    schema:name "équation parabolique"@en ;

<> # Équations aux dérivées partielles
    a schema:Intangible ;
    schema:name "Équations aux dérivées partielles"@en ;

<> # fonction spéciale
    a schema:Intangible ;
    schema:name "fonction spéciale"@en ;

<> # Partiële differentiaalvergelijkingen
    a schema:Intangible ;
    schema:name "Partiële differentiaalvergelijkingen"@en ;

<> # problème valeur limite
    a schema:Intangible ;
    schema:name "problème valeur limite"@en ;

<> # théorie dispersion
    a schema:Intangible ;
    schema:name "théorie dispersion"@en ;

<> # théorie spectrale
    a schema:Intangible ;
    schema:name "théorie spectrale"@en ;

<> # Differential equations, Partial
    a schema:Intangible ;
    schema:name "Differential equations, Partial"@en ;

    a schema:ProductModel ;
    schema:isbn "3540638253" ;
    schema:isbn "9783540638254" ;

Content-negotiable representations

Chiudi finestra

Per favore entra in WorldCat 

Non hai un account? Puoi facilmente crearne uno gratuito.