skip to content
Foundations of the classical theory of partial differential equations Preview this item
ClosePreview this item

Foundations of the classical theory of partial differential equations

Author: Jurij Vladimirovic Egorov; Michail Aleksandrovic Subin; Yu V Egorov; M A Shubin
Publisher: Berlin : Springer, ©1998.
Series: Encyclopaedia of mathematical sciences, 30.
Edition/Format:   Print book : EnglishView all editions and formats

From the reviews: "...I think the volume is a great success ... The Mathematical Intelligencer, 1993 "... It is comparable in scope with the great Courant-Hilbert Methods of Mathematical Physics, but  Read more...


(not yet rated) 0 with reviews - Be the first.

More like this


Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...


Document Type: Book
All Authors / Contributors: Jurij Vladimirovic Egorov; Michail Aleksandrovic Subin; Yu V Egorov; M A Shubin
ISBN: 3540638253 9783540638254
OCLC Number: 478751152
Notes: "Second printing 1998 of the first edition 1992, which was originally published as Partial Differential Equations I, volume 30 of the Encyclopaedia of mathematical sciences"--Title page verso.
Description: 259 s. : ill.
Contents: 1. Basic Concepts.- 1. Basic Definitions and Examples.- 1.1. The Definition of a Linear Partial Differential Equation.- 1.2. The Role of Partial Differential Equations in the Mathematical Modeling of Physical Processes.- 1.3. Derivation of the Equation for the Longitudinal Elastic Vibrations of a Rod.- 1.4. Derivation of the Equation of Heat Conduction.- 1.5. The Limits of Applicability of Mathematical Models.- 1.6. Initial and Boundary Conditions.- 1.7. Examples of Linear Partial Differential Equations.- 1.8. The Concept of Well-Posedness of a Boundary-value Problem. The Cauchy Problem.- 2. The Cauchy-Kovalevskaya Theorem and Its Generalizations.- 2.1. The Cauchy-Kovalevskaya Theorem.- 2.2. An Example of Nonexistence of an Analytic Solution.- 2.3. Some Generalizations of the Cauchy-Kovalevskaya Theorem. Characteristics.- 2.4. Ovsyannikov's Theorem.- 2.5. Holmgren's Theorem.- 3. Classification of Linear Differential Equations. Reduction to Canonical Form and Characteristics.- 3.1. Classification of Second-Order Equations and Their Reduction to Canonical Form at a Point.- 3.2. Characteristics of Second-Order Equations and Reduction to Canonical Form of Second-Order Equations with Two Independent Variables.- 3.3. Ellipticity, Hyperbolicity, and Parabolicity for General Linear Differential Equations and Systems.- 3.4. Characteristics as Solutions of the Hamilton-Jacobi Equation.- 2. The Classical Theory.- 1. Distributions and Equations with Constant Coefficients.- 1.1. The Concept of a Distribution.- 1.2. The Spaces of Test Functions and Distributions.- 1.3. The Topology in the Space of Distributions.- 1.4. The Support of a Distribution. The General Form of Distributions.- 1.5. Differentiation of Distributions.- 1.6. Multiplication of a Distribution by a Smooth Function. Linear Differential Operators in Spaces of Distributions.- 1.7. Change of Variables and Homogeneous Distributions.- 1.8. The Direct or Tensor Product of Distributions.- 1.9. The Convolution of Distributions.- 1.10. The Fourier Transform of Tempered Distributions.- 1.11. The Schwartz Kernel of a Linear Operator.- 1.12. Fundamental Solutions for Operators with Constant Coefficients.- 1.13. A Fundamental Solution for the Cauchy Problem.- 1.14. Fundamental Solutions and Solutions of Inhomogeneous Equations.- 1.15. Duhamel's Principle for Equations with Constant Coefficients.- 1.16. The Fundamental Solution and the Behavior of Solutions at Infinity.- 1.17. Local Properties of Solutions of Homogeneous Equations with Constant Coefficients. Hypoellipticity and Ellipticity.- 1.18. Liouville's Theorem for Equations with Constant Coefficients.- 1.19. Isolated Singularities of Solutions of Hypoelliptic Equations.- 2. Elliptic Equations and Boundary-Value Problems.- 2.1. The Definition of Ellipticity. The Laplace and Poisson Equations.- 2.2. A Fundamental Solution for the Laplacian Operator. Green's Formula.- 2.3. Mean-Value Theorems for Harmonic Functions.- 2.4. The Maximum Principle for Harmonic Functions and the Normal Derivative Lemma.- 2.5. Uniqueness of the Classical Solutions of the Dirichlet and Neumann Problems for Laplace's Equation.- 2.6. Internal A Priori Estimates for Harmonic Functions. Harnack's Theorem.- 2.7. The Green's Function of the Dirichlet Problem for Laplace's Equation.- 2.8. The Green's Function and the Solution of the Dirichlet Problem for a Ball and a Half-Space. The Reflection Principle.- 2.9. Harnack's Inequality and Liouville's Theorem.- 2.10. The Removable Singularities Theorem.- 2.11. The Kelvin Transform and the Statement of Exterior Boundary-Value Problems for Laplace's Equation.- 2.12. Potentials.- 2.13. Application of Potentials to the Solution of Boundary-Value Problems.- 2.14. Boundary-Value Problems for Poisson's Equation in Holder Spaces. Schauder Estimates.- 2.15. Capacity.- 2.16. The Dirichlet Problem in the Case of Arbitrary Regions (The Method of Balayage). Regularity of a Boundary Point. The Wiener Regularity Criterion.- 2.17. General Second-Order Elliptic Equations. Eigenvalues and Eigenfunctions of Elliptic Operators.- 2.18. Higher-Order Elliptic Equations and General Elliptic Boundary-Value Problems. The Shapiro-Lopatinskij Condition.- 2.19. The Index of an Elliptic Boundary-Value Problem.- 2.20. Ellipticity with a Parameter and Unique Solvability of Elliptic Boundary-Value Problems.- 3. Sobolev Spaces and Generalized Solutions of Boundary-Value Problems.- 3.1. The Fundamental Spaces.- 3.2. Imbedding and Trace Theorems.- 3.3. Generalized Solutions of Elliptic Boundary-Value Problems and Eigenvalue Problems.- 3.4. Generalized Solutions of Parabolic Boundary-Value Problems.- 3.5. Generalized Solutions of Hyperbolic Boundary-Value Problems.- 4. Hyperbolic Equations.- 4.1. Definitions and Examples.- 4.2. Hyperbolicity and Well-Posedness of the Cauchy Problem.- 4.3. Energy Estimates.- 4.4. The Speed of Propagation of Disturbances.- 4.5. Solution of the Cauchy Problem for the Wave Equation.- 4.6. Huyghens' Principle.- 4.7. The Plane Wave Method.- 4.8. The Solution of the Cauchy Problem in the Plane.- 4.9. Lacunae.- 4.10. The Cauchy Problem for a Strictly Hyperbolic System with Rapidly Oscillating Initial Data.- 4.11. Discontinuous Solutions of Hyperbolic Equations.- 4.12. Symmetric Hyperbolic Operators.- 4.13. The Mixed Boundary-Value Problem.- 4.14. The Method of Separation of Variables.- 5. Parabolic Equations.- 5.1. Definitions and Examples.- 5.2. The Maximum Principle and Its Consequences.- 5.3. Integral Estimates.- 5.4. Estimates in Holder Spaces.- 5.5. The Regularity of Solutions of a Second-Order Parabolic Equation.- 5.6. Poisson's Formula.- 5.7. A Fundamental Solution of the Cauchy Problem for a Second-Order Equation with Variable Coefficients.- 5.8. Shilov-Parabolic Systems.- 5.9. Systems with Variable Coefficients.- 5.10. The Mixed Boundary-Value Problem.- 5.11. Stabilization of the Solutions of the Mixed Boundary-Value Problem and the Cauchy Problem.- 6. General Evolution Equations.- 6.1. The Cauchy Problem. The Hadamard and Petrovskij Conditions.- 6.2. Application of the Laplace Transform.- 6.3. Application of the Theory of Semigroups.- 6.4. Some Examples.- 7. Exterior Boundary-Value Problems and Scattering Theory.- 7.1. Radiation Conditions.- 7.2. The Principle of Limiting Absorption and Limiting Amplitude.- 7.3. Radiation Conditions and the Principle of Limiting Absorption for Higher-Order Equations and Systems.- 7.4. Decay of the Local Energy.- 7.5. Scattering of Plane Waves.- 7.6. Spectral Analysis.- 7.7. The Scattering Operator and the Scattering Matrix.- 8. Spectral Theory of One-Dimensional Differential Operators.- 8.1. Outline of the Method of Separation of Variables.- 8.2. Regular Self-Adjoint Problems.- 8.3. Periodic and Antiperiodic Boundary Conditions.- 8.4. Asymptotics of the Eigenvalues and Eigenfunctions in the Regular Case.- 8.5. The Schrodinger Operator on a Half-Line.- 8.6. Essential Self-Adjointness and Self-Adjoint Extensions. The Weyl Circle and the Weyl Point.- 8.7. The Case of an Increasing Potential.- 8.8. The Case of a Rapidly Decaying Potential.- 8.9. The Schrodinger Operator on the Entire Line.- 8.10. The Hill Operator.- 9. Special Functions.- 9.1. Spherical Functions.- 9.2. The Legendre Polynomials.- 9.3. Cylindrical Functions.- 9.4. Properties of the Cylindrical Functions.- 9.5. Airy's Equation.- 9.6. Some Other Classes of Functions.- References.- Author Index.
Series Title: Encyclopaedia of mathematical sciences, 30.
Other Titles: Itogi nauki techniki Sovremennye problemy matematiki, Fundamental'nye uravneiya, Vol. 30
Responsibility: Yu. V. Egorov, M.A. Shubin.


Editorial reviews

Publisher Synopsis

From the reviews: "...I think the volume is a great success ... a welcome addition to the literature ..." The Mathematical Intelligencer, 1993 "... According to the authors ... the work was written Read more...

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...


Be the first.

Similar Items

Related Subjects:(1)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data

Primary Entity

<> # Foundations of the classical theory of partial differential equations
    a schema:CreativeWork, schema:Book ;
   library:oclcnum "478751152" ;
   library:placeOfPublication <> ;
   library:placeOfPublication <> ; # Berlin
   schema:about <> ; # Partielle Differentialgleichung
   schema:bookFormat bgn:PrintBook ;
   schema:contributor <> ; # Yu. V. Egorov
   schema:contributor <> ; # M. A. Shubin
   schema:contributor <> ; # Michail Aleksandrovic Subin
   schema:copyrightYear "1998" ;
   schema:creator <> ; # Jurij Vladimirovic Egorov
   schema:datePublished "1998" ;
   schema:exampleOfWork <> ; # Itogi nauki techniki Sovremennye problemy matematiki, Fundamental'nye uravneiya, Vol. 30
   schema:inLanguage "en" ;
   schema:isPartOf <> ; # Encyclopaedia of mathematical sciences ;
   schema:name "Foundations of the classical theory of partial differential equations" ;
   schema:productID "478751152" ;
   schema:publication <> ;
   schema:publisher <> ; # Springer
   schema:workExample <> ;
   umbel:isLike <> ;
   wdrs:describedby <> ;

Related Entities

<> # Yu. V. Egorov
    a schema:Person ;
   schema:familyName "Egorov" ;
   schema:givenName "Yu. V." ;
   schema:name "Yu. V. Egorov" ;

<> # M. A. Shubin
    a schema:Person ;
   schema:familyName "Shubin" ;
   schema:givenName "M. A." ;
   schema:name "M. A. Shubin" ;

<> # Encyclopaedia of mathematical sciences ;
    a bgn:PublicationSeries ;
   schema:hasPart <> ; # Foundations of the classical theory of partial differential equations
   schema:name "Encyclopaedia of mathematical sciences ;" ;

<> # Partielle Differentialgleichung
    a schema:Intangible ;
   schema:name "Partielle Differentialgleichung" ;

<> # Jurij Vladimirovic Egorov
    a schema:Person ;
   schema:familyName "Egorov" ;
   schema:givenName "Jurij Vladimirovic" ;
   schema:name "Jurij Vladimirovic Egorov" ;

<> # Michail Aleksandrovic Subin
    a schema:Person ;
   schema:birthDate "1944" ;
   schema:familyName "Subin" ;
   schema:givenName "Michail Aleksandrovic" ;
   schema:name "Michail Aleksandrovic Subin" ;

<> # Itogi nauki techniki Sovremennye problemy matematiki, Fundamental'nye uravneiya, Vol. 30
   schema:name "Itogi nauki techniki Sovremennye problemy matematiki, Fundamental'nye uravneiya, Vol. 30" ;

    a schema:ProductModel ;
   schema:isbn "3540638253" ;
   schema:isbn "9783540638254" ;

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.