skip to content
Foundations of the classical theory of partial differential equations Preview this item
ClosePreview this item

Foundations of the classical theory of partial differential equations

Author: Ûrij Vladimirovič Egorov; Mihail Aleksandrovič Šubin; R V Gamkrelidze; Roger Cooke
Publisher: Berlin ; Heidelberg ; New York [etc] : Springer, cop. 1998, cop. 1998.
Edition/Format:   Print book : EnglishView all editions and formats

From the reviews: "...I think the volume is a great success ... a welcome addition to the literature ..." The Mathematical Intelligencer, 1993 "... It is comparable in scope with the great  Read more...


(not yet rated) 0 with reviews - Be the first.

More like this


Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...


Document Type: Book
All Authors / Contributors: Ûrij Vladimirovič Egorov; Mihail Aleksandrovič Šubin; R V Gamkrelidze; Roger Cooke
ISBN: 3540638253 9783540638254
OCLC Number: 490781187
Notes: Trad. du russe : "Differentsial'nye uravneniya s chastnymi proizvodnymi I."
2e impression en 1998, de l'édition de 1992, publié sous le titre "Partial Differential Equations I" (Encyclopaedia of mathematical sciences ; 30).
Description: 1 vol. (259 p.) ; 24 cm
Contents: 1. Basic Concepts.- 1. Basic Definitions and Examples.- 1.1. The Definition of a Linear Partial Differential Equation.- 1.2. The Role of Partial Differential Equations in the Mathematical Modeling of Physical Processes.- 1.3. Derivation of the Equation for the Longitudinal Elastic Vibrations of a Rod.- 1.4. Derivation of the Equation of Heat Conduction.- 1.5. The Limits of Applicability of Mathematical Models.- 1.6. Initial and Boundary Conditions.- 1.7. Examples of Linear Partial Differential Equations.- 1.8. The Concept of Well-Posedness of a Boundary-value Problem. The Cauchy Problem.- 2. The Cauchy-Kovalevskaya Theorem and Its Generalizations.- 2.1. The Cauchy-Kovalevskaya Theorem.- 2.2. An Example of Nonexistence of an Analytic Solution.- 2.3. Some Generalizations of the Cauchy-Kovalevskaya Theorem. Characteristics.- 2.4. Ovsyannikov's Theorem.- 2.5. Holmgren's Theorem.- 3. Classification of Linear Differential Equations. Reduction to Canonical Form and Characteristics.- 3.1. Classification of Second-Order Equations and Their Reduction to Canonical Form at a Point.- 3.2. Characteristics of Second-Order Equations and Reduction to Canonical Form of Second-Order Equations with Two Independent Variables.- 3.3. Ellipticity, Hyperbolicity, and Parabolicity for General Linear Differential Equations and Systems.- 3.4. Characteristics as Solutions of the Hamilton-Jacobi Equation.- 2. The Classical Theory.- 1. Distributions and Equations with Constant Coefficients.- 1.1. The Concept of a Distribution.- 1.2. The Spaces of Test Functions and Distributions.- 1.3. The Topology in the Space of Distributions.- 1.4. The Support of a Distribution. The General Form of Distributions.- 1.5. Differentiation of Distributions.- 1.6. Multiplication of a Distribution by a Smooth Function. Linear Differential Operators in Spaces of Distributions.- 1.7. Change of Variables and Homogeneous Distributions.- 1.8. The Direct or Tensor Product of Distributions.- 1.9. The Convolution of Distributions.- 1.10. The Fourier Transform of Tempered Distributions.- 1.11. The Schwartz Kernel of a Linear Operator.- 1.12. Fundamental Solutions for Operators with Constant Coefficients.- 1.13. A Fundamental Solution for the Cauchy Problem.- 1.14. Fundamental Solutions and Solutions of Inhomogeneous Equations.- 1.15. Duhamel's Principle for Equations with Constant Coefficients.- 1.16. The Fundamental Solution and the Behavior of Solutions at Infinity.- 1.17. Local Properties of Solutions of Homogeneous Equations with Constant Coefficients. Hypoellipticity and Ellipticity.- 1.18. Liouville's Theorem for Equations with Constant Coefficients.- 1.19. Isolated Singularities of Solutions of Hypoelliptic Equations.- 2. Elliptic Equations and Boundary-Value Problems.- 2.1. The Definition of Ellipticity. The Laplace and Poisson Equations.- 2.2. A Fundamental Solution for the Laplacian Operator. Green's Formula.- 2.3. Mean-Value Theorems for Harmonic Functions.- 2.4. The Maximum Principle for Harmonic Functions and the Normal Derivative Lemma.- 2.5. Uniqueness of the Classical Solutions of the Dirichlet and Neumann Problems for Laplace's Equation.- 2.6. Internal A Priori Estimates for Harmonic Functions. Harnack's Theorem.- 2.7. The Green's Function of the Dirichlet Problem for Laplace's Equation.- 2.8. The Green's Function and the Solution of the Dirichlet Problem for a Ball and a Half-Space. The Reflection Principle.- 2.9. Harnack's Inequality and Liouville's Theorem.- 2.10. The Removable Singularities Theorem.- 2.11. The Kelvin Transform and the Statement of Exterior Boundary-Value Problems for Laplace's Equation.- 2.12. Potentials.- 2.13. Application of Potentials to the Solution of Boundary-Value Problems.- 2.14. Boundary-Value Problems for Poisson's Equation in Holder Spaces. Schauder Estimates.- 2.15. Capacity.- 2.16. The Dirichlet Problem in the Case of Arbitrary Regions (The Method of Balayage). Regularity of a Boundary Point. The Wiener Regularity Criterion.- 2.17. General Second-Order Elliptic Equations. Eigenvalues and Eigenfunctions of Elliptic Operators.- 2.18. Higher-Order Elliptic Equations and General Elliptic Boundary-Value Problems. The Shapiro-Lopatinskij Condition.- 2.19. The Index of an Elliptic Boundary-Value Problem.- 2.20. Ellipticity with a Parameter and Unique Solvability of Elliptic Boundary-Value Problems.- 3. Sobolev Spaces and Generalized Solutions of Boundary-Value Problems.- 3.1. The Fundamental Spaces.- 3.2. Imbedding and Trace Theorems.- 3.3. Generalized Solutions of Elliptic Boundary-Value Problems and Eigenvalue Problems.- 3.4. Generalized Solutions of Parabolic Boundary-Value Problems.- 3.5. Generalized Solutions of Hyperbolic Boundary-Value Problems.- 4. Hyperbolic Equations.- 4.1. Definitions and Examples.- 4.2. Hyperbolicity and Well-Posedness of the Cauchy Problem.- 4.3. Energy Estimates.- 4.4. The Speed of Propagation of Disturbances.- 4.5. Solution of the Cauchy Problem for the Wave Equation.- 4.6. Huyghens' Principle.- 4.7. The Plane Wave Method.- 4.8. The Solution of the Cauchy Problem in the Plane.- 4.9. Lacunae.- 4.10. The Cauchy Problem for a Strictly Hyperbolic System with Rapidly Oscillating Initial Data.- 4.11. Discontinuous Solutions of Hyperbolic Equations.- 4.12. Symmetric Hyperbolic Operators.- 4.13. The Mixed Boundary-Value Problem.- 4.14. The Method of Separation of Variables.- 5. Parabolic Equations.- 5.1. Definitions and Examples.- 5.2. The Maximum Principle and Its Consequences.- 5.3. Integral Estimates.- 5.4. Estimates in Holder Spaces.- 5.5. The Regularity of Solutions of a Second-Order Parabolic Equation.- 5.6. Poisson's Formula.- 5.7. A Fundamental Solution of the Cauchy Problem for a Second-Order Equation with Variable Coefficients.- 5.8. Shilov-Parabolic Systems.- 5.9. Systems with Variable Coefficients.- 5.10. The Mixed Boundary-Value Problem.- 5.11. Stabilization of the Solutions of the Mixed Boundary-Value Problem and the Cauchy Problem.- 6. General Evolution Equations.- 6.1. The Cauchy Problem. The Hadamard and Petrovskij Conditions.- 6.2. Application of the Laplace Transform.- 6.3. Application of the Theory of Semigroups.- 6.4. Some Examples.- 7. Exterior Boundary-Value Problems and Scattering Theory.- 7.1. Radiation Conditions.- 7.2. The Principle of Limiting Absorption and Limiting Amplitude.- 7.3. Radiation Conditions and the Principle of Limiting Absorption for Higher-Order Equations and Systems.- 7.4. Decay of the Local Energy.- 7.5. Scattering of Plane Waves.- 7.6. Spectral Analysis.- 7.7. The Scattering Operator and the Scattering Matrix.- 8. Spectral Theory of One-Dimensional Differential Operators.- 8.1. Outline of the Method of Separation of Variables.- 8.2. Regular Self-Adjoint Problems.- 8.3. Periodic and Antiperiodic Boundary Conditions.- 8.4. Asymptotics of the Eigenvalues and Eigenfunctions in the Regular Case.- 8.5. The Schrodinger Operator on a Half-Line.- 8.6. Essential Self-Adjointness and Self-Adjoint Extensions. The Weyl Circle and the Weyl Point.- 8.7. The Case of an Increasing Potential.- 8.8. The Case of a Rapidly Decaying Potential.- 8.9. The Schrodinger Operator on the Entire Line.- 8.10. The Hill Operator.- 9. Special Functions.- 9.1. Spherical Functions.- 9.2. The Legendre Polynomials.- 9.3. Cylindrical Functions.- 9.4. Properties of the Cylindrical Functions.- 9.5. Airy's Equation.- 9.6. Some Other Classes of Functions.- References.- Author Index.
Responsibility: Yu. V. Egorov, M.A. Shubin ; [Translator R. Cooke] ; [R.V. Gamkrelidze, editor in chief].


Editorial reviews

Publisher Synopsis

From the reviews: "...I think the volume is a great success ... a welcome addition to the literature ..." The Mathematical Intelligencer, 1993 "... According to the authors ... the work was written Read more...

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...


Be the first.

Similar Items

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data

Primary Entity

<> # Foundations of the classical theory of partial differential equations
    a schema:CreativeWork, schema:Book ;
   bgn:translationOfWork <> ; # Differentsial'nye uravneniya s chastnymi proizvodnymi I
   library:oclcnum "490781187" ;
   library:placeOfPublication <> ;
   library:placeOfPublication <> ; # Heidelberg
   library:placeOfPublication <> ; # New York etc
   library:placeOfPublication <> ; # Berlin
   schema:about <> ; # Équations aux dérivées partielles
   schema:about <> ;
   schema:author <> ; # Ûrij Vladimirovič Egorov
   schema:author <> ; # Mihail Aleksandrovič Šubin
   schema:bookFormat bgn:PrintBook ;
   schema:contributor <> ; # Roger Cooke
   schema:copyrightYear "op." ;
   schema:copyrightYear "1998" ;
   schema:datePublished "1998" ;
   schema:editor <> ; # R. V. Gamkrelidze
   schema:exampleOfWork <> ;
   schema:inLanguage "en" ;
   schema:name "Foundations of the classical theory of partial differential equations" ;
   schema:productID "490781187" ;
   schema:publication <> ;
   schema:publisher <> ; # Springer
   schema:workExample <> ;
   wdrs:describedby <> ;

Related Entities

<> # Roger Cooke
    a schema:Person ;
   schema:birthDate "1942" ;
   schema:deathDate "" ;
   schema:familyName "Cooke" ;
   schema:givenName "Roger" ;
   schema:name "Roger Cooke" ;

<> # R. V. Gamkrelidze
    a schema:Person ;
   schema:birthDate "1927" ;
   schema:deathDate "" ;
   schema:familyName "Gamkrelidze" ;
   schema:givenName "R. V." ;
   schema:name "R. V. Gamkrelidze" ;

<> # Équations aux dérivées partielles
    a schema:Intangible ;
   schema:name "Équations aux dérivées partielles" ;

<> # Ûrij Vladimirovič Egorov
    a schema:Person ;
   schema:birthDate "1938" ;
   schema:deathDate "" ;
   schema:familyName "Egorov" ;
   schema:givenName "Ûrij Vladimirovič" ;
   schema:name "Ûrij Vladimirovič Egorov" ;

<> # Mihail Aleksandrovič Šubin
    a schema:Person ;
   schema:birthDate "1944" ;
   schema:deathDate "" ;
   schema:familyName "Šubin" ;
   schema:givenName "Mihail Aleksandrovič" ;
   schema:name "Mihail Aleksandrovič Šubin" ;

    a schema:ProductModel ;
   schema:isbn "3540638253" ;
   schema:isbn "9783540638254" ;

<> # Differentsial'nye uravneniya s chastnymi proizvodnymi I
    a schema:CreativeWork ;
   schema:inLanguage "ru" ;
   schema:name "Differentsial'nye uravneniya s chastnymi proizvodnymi I" ;

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.