skip to content
Fraud data analytics methodology : the fraud scenario approach to uncovering fraud in core business systems Preview this item
ClosePreview this item
Checking...

Fraud data analytics methodology : the fraud scenario approach to uncovering fraud in core business systems

Author: Leonard W Vona
Publisher: Hoboken, New Jersey : John Wiley & Sons, Inc., [2017]
Series: Wiley corporate F & A.
Edition/Format:   Print book : EnglishView all editions and formats
Summary:
Fraud Data Analytics Methodology addresses the need for clear, reliable fraud detection with a solid framework for a robust data analytic plan. By combining fraud risk assessment and fraud data analytics, you'll be able to better identify and respond to the risk of fraud in your audits. Proven techniques help you identify signs of fraud hidden deep within company databases, and strategic guidance demonstrates how to  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: Leonard W Vona
ISBN: 9781119186793 111918679X
OCLC Number: 936011309
Notes: Includes index.
Description: xi, 388 pages : illustrations ; 24 cm.
Contents: Chapter 1: Introduction to Fraud Data Analytics --
Chapter 2: Fraud Scenario Identification --
Chapter 3: Data Analytics Strategies for Fraud Detection --
Chapter 4: How to Build a Fraud Data Analytics Plan --
Chapter 5: Data Analytics in the Fraud Audit --
Chapter 6: Fraud Data Analytics for Shell Companies --
Chapter 7: Fraud Data Analytics for Fraudulent Disbursements --
Chapter 8: Fraud Data Analytics for Payroll Fraud --
Chapter 9: Fraud Data Analytics for Company Credit Cards --
Chapter 10: Fraud Data Analytics for Theft of Revenue and Cash Receipts --
Chapter 11: Fraud Data Analytics for Corruption Occurring in the Procurement Process --
Chapter 12: Corruption Committed by the Company --
Chapter 13: Fraud Data Analytics for Financial Statements --
Chapter 14: Fraud Data Analytics for Revenue and Accounts Receivable Misstatement --
Chapter 15: Fraud Data Analytics for Journal Entries --
Appendix A: Data Mining Audit Program for Shell Companies.
Series Title: Wiley corporate F & A.
Responsibility: Leonard W. Vona.

Abstract:

Uncover hidden fraud and red flags using efficient data analytics Fraud Data Analytics Methodology addresses the need for clear, reliable fraud detection with a solid framework for a robust data  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/936011309> # Fraud data analytics methodology : the fraud scenario approach to uncovering fraud in core business systems
    a schema:Book, schema:CreativeWork ;
   library:oclcnum "936011309" ;
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/nju> ;
   schema:about <http://experiment.worldcat.org/entity/work/data/2896418459#Topic/auditing> ; # Auditing
   schema:about <http://dewey.info/class/658.473/e23/> ;
   schema:about <http://experiment.worldcat.org/entity/work/data/2896418459#Topic/fraud_prevention> ; # Fraud--Prevention
   schema:about <http://experiment.worldcat.org/entity/work/data/2896418459#Topic/auditing_internal> ; # Auditing, Internal
   schema:about <http://experiment.worldcat.org/entity/work/data/2896418459#Topic/forensic_accounting> ; # Forensic accounting
   schema:author <http://experiment.worldcat.org/entity/work/data/2896418459#Person/vona_leonard_w_1955> ; # Leonard W. Vona
   schema:bookFormat bgn:PrintBook ;
   schema:datePublished "2017" ;
   schema:description "Fraud Data Analytics Methodology addresses the need for clear, reliable fraud detection with a solid framework for a robust data analytic plan. By combining fraud risk assessment and fraud data analytics, you'll be able to better identify and respond to the risk of fraud in your audits. Proven techniques help you identify signs of fraud hidden deep within company databases, and strategic guidance demonstrates how to build data interrogation search routines into your fraud risk assessment to locate red flags and fraudulent transactions. These methodologies require no advanced software skills, and are easily implemented and integrated into any existing audit program. Professional standards now require all audits to include data analytics, and this informative guide shows you how to leverage this critical tool for recognizing fraud in today's core business systems. Fraud cannot be detected through audit unless the sample contains a fraudulent transaction. This book explores methodologies that allow you to locate transactions that should undergo audit testing.--"@en ;
   schema:description "Chapter 1: Introduction to Fraud Data Analytics -- Chapter 2: Fraud Scenario Identification -- Chapter 3: Data Analytics Strategies for Fraud Detection -- Chapter 4: How to Build a Fraud Data Analytics Plan -- Chapter 5: Data Analytics in the Fraud Audit -- Chapter 6: Fraud Data Analytics for Shell Companies -- Chapter 7: Fraud Data Analytics for Fraudulent Disbursements -- Chapter 8: Fraud Data Analytics for Payroll Fraud -- Chapter 9: Fraud Data Analytics for Company Credit Cards -- Chapter 10: Fraud Data Analytics for Theft of Revenue and Cash Receipts -- Chapter 11: Fraud Data Analytics for Corruption Occurring in the Procurement Process -- Chapter 12: Corruption Committed by the Company -- Chapter 13: Fraud Data Analytics for Financial Statements -- Chapter 14: Fraud Data Analytics for Revenue and Accounts Receivable Misstatement -- Chapter 15: Fraud Data Analytics for Journal Entries -- Appendix A: Data Mining Audit Program for Shell Companies."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/2896418459> ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/2896418459#Series/wiley_corporate_f_&_a> ; # Wiley corporate F & A.
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/2896418459#Series/wiley_corporate_f&a_series> ; # Wiley corporate F&A series
   schema:name "Fraud data analytics methodology : the fraud scenario approach to uncovering fraud in core business systems"@en ;
   schema:productID "936011309" ;
   schema:workExample <http://worldcat.org/isbn/9781119186793> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/936011309> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/2896418459#Person/vona_leonard_w_1955> # Leonard W. Vona
    a schema:Person ;
   schema:birthDate "1955" ;
   schema:familyName "Vona" ;
   schema:givenName "Leonard W." ;
   schema:name "Leonard W. Vona" ;
    .

<http://experiment.worldcat.org/entity/work/data/2896418459#Series/wiley_corporate_f_&_a> # Wiley corporate F & A.
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/936011309> ; # Fraud data analytics methodology : the fraud scenario approach to uncovering fraud in core business systems
   schema:name "Wiley corporate F & A." ;
    .

<http://experiment.worldcat.org/entity/work/data/2896418459#Series/wiley_corporate_f&a_series> # Wiley corporate F&A series
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/936011309> ; # Fraud data analytics methodology : the fraud scenario approach to uncovering fraud in core business systems
   schema:name "Wiley corporate F&A series" ;
    .

<http://experiment.worldcat.org/entity/work/data/2896418459#Topic/forensic_accounting> # Forensic accounting
    a schema:Intangible ;
   schema:name "Forensic accounting"@en ;
    .

<http://worldcat.org/isbn/9781119186793>
    a schema:ProductModel ;
   schema:isbn "111918679X" ;
   schema:isbn "9781119186793" ;
    .

<http://www.worldcat.org/title/-/oclc/936011309>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
   schema:about <http://www.worldcat.org/oclc/936011309> ; # Fraud data analytics methodology : the fraud scenario approach to uncovering fraud in core business systems
   schema:dateModified "2018-03-10" ;
   void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.