doorgaan naar inhoud
Frechet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces Voorbeeldweergave van dit item
SluitenVoorbeeldweergave van dit item
Bezig met controle...

Frechet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces

Auteur: Joram Lindenstrauss; David Preiss; Jaroslav Tišer
Uitgever: Princeton : Princeton University Press, 2012.
Serie: Annals of mathematics studies, no. 179
Editie/Formaat:   eBoek : Document : EngelsAlle edities en materiaalsoorten bekijken.
Database:WorldCat
Samenvatting:
This book makes a significant inroad into the unexpectedly difficult question of existence of Fréchet derivatives of Lipschitz maps of Banach spaces into higher dimensional spaces. Because the question turns out to be closely related to porous sets in Banach spaces, it provides a bridge between descriptive set theory and the classical topic of existence of derivatives of vector-valued Lipschitz functions. The topic  Meer lezen...
Beoordeling:

(nog niet beoordeeld) 0 met beoordelingen - U bent de eerste

Onderwerpen
Meer in deze trant

 

Zoeken naar een online exemplaar

Links naar dit item

Zoeken naar een in de bibliotheek beschikbaar exemplaar

&AllPage.SpinnerRetrieving; Bibliotheken met dit item worden gezocht…

Details

Genre/Vorm: Electronic books
Aanvullende fysieke materiaalsoort: Print version:
Lindenstrauss, Joram.
Frechet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces.
Princeton : Princeton University Press, ©2012
Genre: Document, Internetbron
Soort document: Internetbron, Computerbestand
Alle auteurs / medewerkers: Joram Lindenstrauss; David Preiss; Jaroslav Tišer
ISBN: 9781400842698 1400842697
OCLC-nummer: 769343169
Opmerkingen: 14.7 Proof of Theorem.
Beschrijving: 1 online resource (436 pages).
Inhoud: Cover; Title Page; Copyright Page; Table of Contents; Chapter 1. Introduction; 1.1 Key notions and notation; Chapter 2. Gâteaux Dfferentiability of Lipschitz Functions; 2.1 Radon-Nikodým Property; 2.2 Haar and Aronszajn-Gauss Null Sets; 2.3 Existence Results for Gâteaux Derivatives; 2.4 Mean Value Estimates; Chapter 3. Smoothness, Convexity, Porosity, and Separable Determination; 3.1 A criterion of Differentiability of Convex Functions; 3.2 Fréchet Smooth and Nonsmooth Renormings; 3.3 Fréchet Differentiability of Convex Functions; 3.4 Porosity and Nondifferentiability. 3.5 Sets of Fréchet Differentiability Points3.6 Separable Determination; Chapter 4. e-Fréchet Differentiability; 4.1 e-Differentiability and Uniform Smoothness; 4.2 Asymptotic Uniform Smoothness; 4.3 e-Fréchet Differentiability of Functions on Asymptotically Smooth Spaces; Chapter 5. G-Null and Gn-Null Sets; 5.1 Introduction; 5.2 G-Null Sets and Gâteaux Differentiability; 5.3 Spaces of Surfaces; 5.4 G- and Gn-Null Sets of low Borel Classes; 5.5 Equivalent Definitions of Gn-Null Sets; 5.6 Separable Determination; Chapter 6. Fréchet Differentiability Except for G-Null Sets; 6.1 Introduction. 6.2 Regular Points6.3 A Criterion of Fréchet Differentiability; 6.4 Fréchet Differentiability Except for G-Null Sets; Chapter 7. Variational Principles; 7.1 Introduction; 7.2 Variational Principles via Games; 7.3 Bimetric Variational Principles; Chapter 8. Smoothness and Asymptotic Smoothness; 8.1 Modulus of Smoothness; 8.2 Smooth Bumps with Controlled Modulus; Chapter 9. Preliminaries to Main Results; 9.1 Notation, Linear Operators, Tensor Products; 9.2 Derivatives and Regularity; 9.3 Deformation of Surfaces Controlled by?n; 9.4 Divergence Theorem; 9.5 Some Integral Estimates. Chapter 10. Porosity, Gn- and G-Null Sets10.1 Porous and s-Porous Sets; 10.2 A Criterion of Gn-nullness of Porous Sets; 10.3 Directional Porosity and Gn-Nullness; 10.4 s-Porosity and Gn-Nullness; 10.5 G1-Nullness of Porous Sets and Asplundness; 10.6 Spaces in which s-Porous Sets are G-Null; Chapter 11. Porosity and e-Fréchet Differentiability; 11.1 Introduction; 11.2 Finite Dimensional Approximation; 11.3 Slices and e-Differentiability; Chapter 12. Fréchet Differentiability of Real-Valued Functions; 12.1 Introduction and Main Results; 12.2 An Illustrative Special Case. 12.3 A Mean Value Estimate12.4 Proof of Theorems; 12.5 Generalizations and Extensions; Chapter 13. Fréchet Differentiability of Vector-Valued Functions; 13.1 Main Results; 13.2 Regularity Parameter; 13.3 Reduction to a Special Case; 13.4 Regular Fréchet Differentiability; 13.5 Fréchet Differentiability; 13.6 Simpler Special Cases; Chapter 14. Unavoidable Porous Sets and Nondifferentiable Maps; 14.1 Introduction and Main Results; 14.2 An Unavoidable Porous Set in l1; 14.3 Preliminaries to Proofs of Main Results; 14.4 The Main Construction; 14.5 The Main Construction; 14.6 Proof of Theorem.
Serietitel: Annals of mathematics studies, no. 179

Fragment:

Focuses on the difficult question of existence of Frchet derivatives of Lipschitz maps of Banach spaces into higher dimensional spaces. This book provides a bridge between descriptive set theory and  Meer lezen...

Beoordelingen

Professionele beoordelingen

Synopsis uitgever

"The book is well written--as one would expect from its distinguished authors, including the late Joram Lindestrauss (1936-2012). It contains many fascinating and profound results. It no doubt will Meer lezen...

 
Beoordelingen door gebruikers
Beoordelingen van GoodReads worden opgehaald...
Bezig met opvragen DOGObooks-reviews...

Tags

U bent de eerste.

Vergelijkbare items

Bevestig deze aanvraag

Misschien heeft u dit item reeds aangevraagd. Selecteer a.u.b. Ok als u toch wilt doorgaan met deze aanvraag.

Gekoppelde data


<http://www.worldcat.org/oclc/769343169>
library:oclcnum"769343169"
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:Book
rdf:typeschema:MediaObject
rdf:valueUnknown value: dct
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2012"
schema:description"Cover; Title Page; Copyright Page; Table of Contents; Chapter 1. Introduction; 1.1 Key notions and notation; Chapter 2. Gâteaux Dfferentiability of Lipschitz Functions; 2.1 Radon-Nikodým Property; 2.2 Haar and Aronszajn-Gauss Null Sets; 2.3 Existence Results for Gâteaux Derivatives; 2.4 Mean Value Estimates; Chapter 3. Smoothness, Convexity, Porosity, and Separable Determination; 3.1 A criterion of Differentiability of Convex Functions; 3.2 Fréchet Smooth and Nonsmooth Renormings; 3.3 Fréchet Differentiability of Convex Functions; 3.4 Porosity and Nondifferentiability."@en
schema:description"This book makes a significant inroad into the unexpectedly difficult question of existence of Fréchet derivatives of Lipschitz maps of Banach spaces into higher dimensional spaces. Because the question turns out to be closely related to porous sets in Banach spaces, it provides a bridge between descriptive set theory and the classical topic of existence of derivatives of vector-valued Lipschitz functions. The topic is relevant to classical analysis and descriptive set theory on Banach spaces. The book opens several new research directions in this area of geometric nonlinear functional analysis. The new methods developed here include a game approach to perturbational variational principles that is of independent interest. Detailed explanation of the underlying ideas and motivation behind the proofs of the new results on Fréchet differentiability of vector-valued functions should make these arguments accessible to a wider audience. The most important special case of the differentiability results, that Lipschitz mappings from a Hilbert space into the plane have points of Fréchet differentiability, is given its own chapter with a proof that is independent of much of the work done to prove more general results. The book raises several open questions concerning its two main topics."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1029425488>
schema:genre"Electronic books"@en
schema:inLanguage"en"
schema:isPartOf
schema:name"Frechet Differentiability of Lipschitz Functions and Porous Sets in Banach Spaces"@en
schema:publication
schema:publisher
schema:url<http://www.myilibrary.com?id=337995>
schema:url<http://www.jstor.org/stable/10.2307/j.ctt7svpc>
schema:url<http://public.eblib.com/choice/publicfullrecord.aspx?p=827806>
schema:url<http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=421487>
schema:workExample
wdrs:describedby

Content-negotiable representations

Venster sluiten

Meld u aan bij WorldCat 

Heeft u geen account? U kunt eenvoudig een nieuwe gratis account aanmaken.