pular para conteúdo
Frequency selective surfaces : theory and design Ver prévia deste item
FecharVer prévia deste item
Checando...

Frequency selective surfaces : theory and design

Autor: Ben Munk
Editora: New York : John Wiley, ©2000.
Edição/Formato   Livro : InglêsVer todas as edições e formatos
Base de Dados:WorldCat
Resumo:
"No longer classified for military use, Frequency Selective Surfaces (FSSs) technology is rapidly finding new applications in electromagnetics, microwaves, antennas, radar, and satellite communications worldwide. In this timely and authoritative work, Ben Munk, a key developer of stealth technology for the U.S. Air Force and Navy, explains what it takes to build different types of FSSs, including the Hybrid Radomes  Ler mais...
Classificação:

(ainda não classificado) 0 com críticas - Seja o primeiro.

Assuntos
Mais como este

 

Encontrar uma cópia na biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que possuem este item...

Detalhes

Tipo de Material: Recurso Internet
Tipo de Documento: Livro, Recurso Internet
Todos os Autores / Contribuintes: Ben Munk
ISBN: 0471370479 9780471370475
Número OCLC: 41977201
Notas: "A Wiley-Interscience Publication."
Descrição: xxx, 410 p. : ill. ; 25 cm.
Conteúdos: 1.1 What is a Periodic Surface? 1 --
1.2 Passive Versus Active Arrays 1 --
1.3 Dipole Versus Slot Arrays 3 --
1.4 Complementary Arrays 4 --
1.5 A Little History with Physical Insight 5 --
1.6 How Do We "Shape" the Resonant Curve? 9 --
1.6.1 Cascading Periodic Surfaces without Dielectrics 10 --
1.6.2 Single Periodic Surface with Dielectric Slabs 10 --
1.6.3 Real Hybrid Periodic Structures 11 --
1.7 Application of Periodic Structures 14 --
1.7.1 Hybrid Radomes 14 --
1.7.2 Band-Stop Filters 14 --
1.7.3 Dichroic Subreflectors 16 --
1.7.4 Dichroic Main Reflectors 18 --
1.7.5 Circuit Analog Absorbers 18 --
1.7.6 Meanderline Polarizers 20 --
1.8 Common Misconceptions 21 --
1.9 Grating Lobes 23 --
2 Element Types: A Comparison 26 --
2.2 Group 1: Center Connected or N-Poles 28 --
2.2.1 "Gangbuster" Surface 28 --
2.2.2 Unloaded Tripole Array 33 --
2.2.3 Anchor Element 33 --
2.2.4 Jerusalem Cross 35 --
2.2.5 Square Spiral Element 37 --
2.3 Group 2: Loop Types 38 --
2.3.1 Four-legged Loaded Element 38 --
2.3.2 Three-legged Loaded Element 44 --
2.3.3 Hexagon Element 46 --
2.4 Group 3: Solid Interior Types 49 --
2.5 Group 4: Combination Elements 54 --
2.6 Some Common Misconceptions About Elements 56 --
2.6.1 Array versus Element Effect 56 --
2.6.2 Bandwidth versus Width of the Elements 58 --
2.7 Comparison of Elements 59 --
3 Evaluating Periodic Structures: An Overview 63 --
3.2 Single Infinite Case 66 --
3.3 Double Infinite Case 69 --
3.5 Common Misconceptions 74 --
3.6 Summary of Our Computational Approach 76 --
4 Spectral Expansion of One- and Two-Dimensional Periodic Structures 79 --
4.2 Vector Potential d A[subscript q] from a Single Infinite Column Array of Hertzian Elements with Arbitrary Orientation p 81 --
4.3 Vector Potential d A for a Double Infinite Array of Hertzian Elements with Arbitrary Orientation p 83 --
4.3.1 Rectangular Grid 83 --
4.3.2 Skewed Grid 85 --
4.4 Vector Fields d H (R) and d E (R) for a Double Infinite Array of Hertzian Elements with Arbitrary Orientation p 86 --
4.5 Vector Field E(R) for a Double Infinite Array of Elements with Given Current Distribution I(l) and Arbitrary Orientation p[superscript (1)] 86 --
4.6 Physical Interpretation 90 --
4.7 Induced Voltages in a Linear Antenna 95 --
4.7.1 By a Single Plane Wave 95 --
4.7.2 By a Plane Wave Spectrum 97 --
4.8 More Physical Insight 100 --
4.8.1 Real Space: r[subscript y] Positive Real 101 --
4.8.2 Imaginary Space: r[subscript y] Negative Imaginary 101 --
4.9 Region II 102 --
4.10 Self-Impedance of a Single Element and of Arrays 103 --
4.11.1 Example I: Scattering from an Array of z-Directed Elements 105 --
4.11.2 Example II: Investigation of R[subscript A] 108 --
4.11.3 Example III: Variation of [Gamma] with Scan Angle 109 --
4.11.4 Example IV: Scan Impedance Z[subscript A] as a Function of Scan Angle; Surface Waves 112 --
4.12 Planar Elements of Arbitrary Shape 114 --
4.12.1 Total Radiated Field from an Array with Segmented Elements 114 --
4.12.2 Induced Voltage in a Segmented Element 115 --
4.12.3 Mutual Impedance Z[superscript 1',1] for Arrays with Segmented Elements 116 --
4.13 Common Misconceptions 117 --
4.13.1 Interpretation of Plane Wave Expansion 117 --
4.13.2 Current Distribution 117 --
4.13.3 Concept of Unit Cells 119 --
4.13.4 Length of Element Segments 119 --
5 Dipole Arrays in a Stratified Medium 125 --
5.2 A Plane Wave Incident upon a Dielectric Interface 125 --
5.3 Arrays and External Elements Located in Infinite Medium Z[subscript m] 128 --
5.4 Arrays and External Elements Located in a Semi-Infinite Medium 130 --
5.5 Arrays and External Elements Located in a Slab 131 --
5.6 Bounce Mode Organization 131 --
5.6.1 Single-Bounce Mode in the Negative y-Direction 133 --
5.6.2 Double-Bounce Mode in the Negativel y-Direction 135 --
5.6.3 Single-Bounce Mode in the Positive y-Direction 136 --
5.6.4 Double-Bounce Mode in the Positive y-Direction 137 --
5.7 Total Voltage V[superscript (1') subscript T ot+] Induced by Waves in Positive and Negative y-Directions 137 --
5.7.1 R[superscript (1')] Located in Region III 138 --
5.8 General Stratified Medium with NonPlanar Elements 140 --
5.9 General Stratified Medium with Planar Elements 142 --
5.10 Scan Independence: Single Array in a Single Slab 143 --
5.11 Surface Waves on Periodic Structures of Electric Dipoles: Free and Forced 148 --
5.12 Onset of Trapped and Free Space Grating Lobes 155 --
5.12.1 Onset without Dielectric 155 --
5.12.2 Onset with Dielectric Slab 157 --
5.13 Examples of Surface Waves and Onset of Grating Lobes for Arrays of Electric Dipoles 162 --
5.13.1 No Dielectric Case 162 --
5.13.2 Dielectric Cases 163 --
5.14 Grating Lobe Diagrams 175 --
5.14.1 Rectangular Array Grid without Dielectric 175 --
5.14.2 Skewed Grid without Dielectric 179 --
5.14.3 Any Array Grid with Dielectric 182 --
5.15 Common Misconceptions 184 --
5.15.1 "Shadow" of an Array 184 --
5.15.2 Effect of Dielectric 184 --
5.15.3 Surface Waves 185 --
5.15.4 On the Distance between Arrays and Dielectric Interface 185 --
6 Slot Arrays in a Stratified Medium 190 --
6.2 Dual Systems 190 --
6.3 Complementary Surfaces 192 --
6.4 Scan Independence of a Slot Array Adjacent to Dielectric Slabs 195 --
6.5 Admittance of a Slot Array with a Dielectric Slab to One Side and a Ground Plane to the Other 199 --
6.6 Mutual Admittance Between Two Slot Arrays 202 --
6.7 Surface Waves on Periodic Structures of Slots: Free and Forced 204 --
6.8 Comparison of Electric Dipole and Slot Cases 207 --
6.9 Onset of Trapped and Free Space Grating Lobes 207 --
6.10 Typical Examples of Surface Waves and Onset of Grating Lobes for Arrays of Slots 208 --
6.11 Common Misconceptions: The Effect of Dielectric 215 --
7 Band-Pass Filter Designs: The Hybrid Radome 227 --
7.2 Modeling of an N-Layered Hybrid Radome 229 --
7.3 Determination of the Transmission Coefficient for an N-Layered Hybrid Radome 230 --
7.3.1 Determination of the Current I[superscript (i)] Induced in the First Array by the Incident Field 230 --
7.3.2 Determination of the Slot Voltages V[superscript (n] 232 --
7.3.3 Determination of the Transmitted Field 234 --
7.4 Analysis of the Hybrid Radome 235 --
7.4.1 Symmetric Hybrid Radome 236 --
7.4.2 Nonsymmetric Hybrid Radome 239 --
7.5 Specific Cases 240 --
7.5.1 N = 1: Monoplanar Symmetric Hybrid Radome 240 --
7.5.2 N = 2: Biplanar Symmetric Hybrid Radome 242 --
7.5.3 N = 3: Triplanar Symmetric Hybrid Radome 249 --
7.5.4 N [greater than or equal] 4: Multilayered Cases 254 --
7.6 "Honeycomb" and Thick Screen Radomes 255 --
7.6.1 Honeycomb Panels 255 --
7.6.2 Thick Screens 258 --
7.6.3 Receive-Transmit Dipoles Connected via Cables 258 --
7.7.1 Reflection: Image Lobes 258 --
7.7.2 Registration Sensitivity 261 --
7.7.3 Luebbers' Anomaly 267 --
7.8 Common Misconceptions about the Design of Hybrid Radomes 267 --
7.8.1 Choice of Elements 267 --
7.8.2 Dielectric Profile 268 --
7.8.3 Inter-element Spacings 268 --
7.8.4 Mutual Admittance Y[superscript 1,2] 269 --
7.8.5 Practicality of the Designs 269 --
7.8.6 On Optimization 269 --
7.8.7 Biplanar versus Multilayered Designs 270 --
7.8.8 Thick Screen Radomes 271 --
7.8.9 Accuracy of the Analysis 272 --
8 Band-Stop and Dichroic Filter Designs 279 --
8.2 Approach 282 --
8.3 How to Calculate the Scattering from N Arrays of Dipoles in a Stratified Medium 282 --
8.4 Choice of the Element Type 284 --
8.5 Choice of Array Separation: Array Interference Nulls 284 --
8.6 Choice of Dielectric Between Arrays 287 --
8.7 Matching in the Band-Pass Region 289 --
8.7.1 Optimizing the Band-Pass9 Transmission without Use of Separate Matching Section 289 --
8.7.2 Designing a Matching Section for the Band-Pass Frequencies 293 --
8.8 Extending the Upper Frequency 297 --
8.9 Effect of Staggered Tuning 300 --
8.9.1 Behavior around f[subscript M] 300 --
8.9.2 Behavior at f[subscript M+] and f[subscript M-] 303 --
8.9.3 Behavior at f[subscript L] and f[subscript H] 303 --
8.9.4 Summary of Equal versus Staggered Tuning 303 --
8.9.5 Conclusions on Equal and Staggered Tuning 306 --
8.10 Conclusions for Band-Stop Filter Design with Broad Bandwidth 306 --
8.11 Band-Stop Filter with Narrow Bandwidth 307 --
8.11.1 Choice of Element 307 --
8.11.2 Choice of Dielectric Profile 307 --
8.11.3 Calculated Reflection and Transmission Curves 309 --
8.12 Common Misconceptions 311 --
8.12.1 Differences between Band-Pass and Band-Stop 311 --
8.12.2 On the Number of Layers 311 --
8.12.3 On the Bandwidth of "Fat" Elements 311 --
9 Jaumann and Circuit Analog Absorbers 315 --
9.2 Salisbury Screen 315 --
9.3 Jaumann Absorber 317 --
9.4 Circuit Analog Absorber 319 --
9.5 Rigorous Calculations of Circuit Analog Absorbers 322 --
9.5.1 Modifications Due to Element Width 322 --
9.5.2 Modifications of the Currents Due to Loss in the Elements 324 --
9.5.3 Equivalent Load Resistance Due to Lossy Elements 325 --
9.5.4 Effect on Load Resistance Due to Orthogonal Strips 328 --
9.6 Effect on Y[subscript a] as Caused by Orthogonal Strips 329 --
9.7 Obtaining a Circuit Analog Admittance from the Field Reflection Coefficient 330 --
9.8 Manufacturing Circuit Analog Sheets 330 --
9.9 Common Misconceptions 332 --
9.9.1 Design Approach 332 --
9.9.2 Phased Arrays versus Circuit Analog Absorbers 333 --
9.9.3 Element Gaps 333 --
10 Power Handling of Periodic Surfaces 336 --
10.2 Breakdown Caused by Heat 337 --
10.3 Breakdown Caused by the Electrical Field in General 337.
Responsabilidade: Ben A. Munk.
Mais informações:

Resumo:

Periodic surfaces are assemblies of identical elements arranged in one or two-dimensional array. Since they have various effects on incident electromagnetic waves, they are widely used in antennas,  Ler mais...

Críticas

Críticas editoriais

Nielsen BookData

"...well-organized and worth reading...The analysis and design concepts, as well as physical insight, presented in this book would provide the reader a great benefit." (IEEE Circuits & Devices Ler mais...

 
Críticas contribuídas por usuários
Recuperando críticas GoodReas...
Recuperando comentários DOGObooks

Etiquetas

Seja o primeiro.

Ítens Similares

Confirmar esta solicitação

Você já pode ter solicitado este item. Por favor, selecione Ok se gostaria de proceder com esta solicitação de qualquer forma.

Dados Ligados


<http://www.worldcat.org/oclc/41977201>
library:oclcnum"41977201"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/41977201>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
<http://id.worldcat.org/fast/934973>
rdf:typeschema:Intangible
schema:name"Frequency selective surfaces"@en
schema:name"Frequency selective surfaces."@en
schema:copyrightYear"2000"
schema:creator
schema:datePublished"2000"
schema:exampleOfWork<http://worldcat.org/entity/work/id/27260936>
schema:inLanguage"en"
schema:name"Frequency selective surfaces : theory and design"@en
schema:numberOfPages"410"
schema:publisher
schema:reviews
rdf:typeschema:Review
schema:itemReviewed<http://www.worldcat.org/oclc/41977201>
schema:reviewBody""No longer classified for military use, Frequency Selective Surfaces (FSSs) technology is rapidly finding new applications in electromagnetics, microwaves, antennas, radar, and satellite communications worldwide. In this timely and authoritative work, Ben Munk, a key developer of stealth technology for the U.S. Air Force and Navy, explains what it takes to build different types of FSSs, including the Hybrid Radomes and other information only recently declassified. Dr. Munk develops the necessary theory and physics, analyzes in detail all the components of a single as well as a multilayered FSS located in a stratified medium, and demonstrates step-by-step how to obtain transmission and reflection curves of the desired shape."--BOOK JACKET."
schema:url
schema:workExample

Content-negotiable representations

Close Window

Por favor, conecte-se ao WorldCat 

Não tem uma conta? Você pode facilmente criar uma conta gratuita.